Align Ribose import ATP-binding protein RbsA 2, component of D-ribose porter (Nanavati et al., 2006). Induced by ribose (characterized)
to candidate 3607108 Dshi_0530 ABC transporter related (RefSeq)
Query= TCDB::Q9X051 (523 letters) >FitnessBrowser__Dino:3607108 Length = 498 Score = 344 bits (882), Expect = 5e-99 Identities = 192/493 (38%), Positives = 298/493 (60%), Gaps = 10/493 (2%) Query: 13 LEARNITKTFPGVIAVNNVTLQIYKGEVCALVGENGAGKSTLMKILAGVYPDYEGQIFLE 72 ++ R ITK + GV A+++V + GE L GENG+GKSTL+KI++GV P G + + Sbjct: 10 IDLRAITKRYAGVTALDSVDFTVQPGEAVCLAGENGSGKSTLIKIISGVEPATAGTVQIA 69 Query: 73 GKEVRFRNPREAQENGIALIPQELDLVPNLSSAENIFLSREPVNEFGVIEYQKMFEQASK 132 G+E NPR + G+ +I Q+ L PNLS AENI + + + +++ + + A Sbjct: 70 GQEHVTLNPRISAAAGVMVIFQDFSLFPNLSVAENIAFTTQLSTRQRLFKFRAVRDIARA 129 Query: 133 LFSKLGVNIDPKTKVEDLSTSQQQMVAIAKALSLDAKIIIMDEPTSAIGKRETEQLFNII 192 ++GV ID +VE L +Q+Q+VAI +AL+ A++IIMDEPT+A+ ++E +L II Sbjct: 130 ALDRIGVQIDLDARVETLPVAQKQLVAICRALASKAQLIIMDEPTTALTEKEVRRLQGII 189 Query: 193 RSLKNEGKSVIYISHRLEEIFEIADRVVVMRDGRKVGEGPIEEFDHDKLVRLMVGRSIDQ 252 R LK EG +VI++SH+L E+ E++++VVV+R+G+KV EGP EFD L M GR + + Sbjct: 190 RMLKEEGVAVIFVSHKLAEVLEVSEKVVVLRNGKKVAEGPASEFDTQSLTYHMTGRDVPE 249 Query: 253 FFIKERATITDEIFRVEGIKLWSLDRKKLLVDDVSFYVRKGEVLGIYGLVGAGRTELLEA 312 + A + +V+G+ K D+SF +R GEVLGI GL+G GRT + +A Sbjct: 250 VPPSDVAAGAQTLMQVQGL------GKAGSFSDISFDLRTGEVLGITGLLGCGRTSVAKA 303 Query: 313 IFGAHPGRTEGKVFIGGKEIKIHSPRDAVKNGIGLVPEDRKTAGLILQMSVLHNITLPSV 372 +FG G + + G + + P+ A IG VPEDR T GL L S+L N+ + + Sbjct: 304 LFGL-VTPDAGSILVDGSPVPLGDPQAASLARIGYVPEDRLTEGLFLSQSILRNVAVGRL 362 Query: 373 VMKLIVRKFGLIDSQLEKEIVRSFIEKLNIKTPSPYQIVENLSGGNQQKVVLAKWLAIKP 432 G +D + ++ +L +K P V++LSGGNQQ+V LA+WL+ P Sbjct: 363 DAH---TSGGFLDMTGLAKEASDWLRRLKVKAPDVEAPVQSLSGGNQQRVALARWLSRAP 419 Query: 433 KVLLLDEPTRGIDVNAKSEIYKLISEMAVSGMGVVMVSSELPEILAMSDRILVMSEGRKT 492 +VL+L+ P+ G+DV +K++I+ +I E+A G+GV+++S +LPE+LA R+LVM EGR Sbjct: 420 RVLILNGPSVGVDVGSKADIHDIIRELAREGIGVIVISDDLPELLATCHRVLVMREGRII 479 Query: 493 AEFLREEVTEEDL 505 +TE+DL Sbjct: 480 DALEGTALTEDDL 492 Lambda K H 0.317 0.137 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 534 Number of extensions: 30 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 498 Length adjustment: 34 Effective length of query: 489 Effective length of database: 464 Effective search space: 226896 Effective search space used: 226896 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory