Align 3-ketoacyl-CoA thiolase B, peroxisomal; Acetyl-CoA acyltransferase B; Beta-ketothiolase B; Peroxisomal 3-oxoacyl-CoA thiolase B; EC 2.3.1.155; EC 2.3.1.16; EC 2.3.1.9 (characterized)
to candidate N515DRAFT_2688 N515DRAFT_2688 acetyl-CoA acyltransferase
Query= SwissProt::P07871 (424 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_2688 N515DRAFT_2688 acetyl-CoA acyltransferase Length = 401 Score = 319 bits (817), Expect = 1e-91 Identities = 189/400 (47%), Positives = 260/400 (65%), Gaps = 23/400 (5%) Query: 37 DVVVVHGRRTPIGRAGRGGFKDTTPDELLSAVLTAVL-QDVKLKPECLGDISVGNVL-QP 94 D +V RTP+G+A RG F++T PD++L+ V+ AV+ Q + +GD+ VG + + Sbjct: 7 DAYIVAATRTPVGKAPRGVFRNTRPDDMLAHVIRAVMAQAPGIDAHRIGDVIVGCAMPEA 66 Query: 95 GAGAAMARIAQFLSGIPETVPLSAVNRQCSSGLQAVANIAGGIRNGSYDIGMACGVESMT 154 G +ARI L+G+P+TVP VNR CSSG+QA+A A IR G D+ +A G ESM+ Sbjct: 67 EQGMNVARIGLLLAGLPDTVPGVTVNRFCSSGVQAIAQAADRIRLGEADLMIAAGTESMS 126 Query: 155 LSER-GNPGNISSRLLENEKARDCLIPMGITSENVAERFGISRQKQDAFALASQQKAASA 213 + G+ ++ + +NE MGIT+ENVA+++ ISR++QD FA AS ++A +A Sbjct: 127 MVPMMGHKVAMNPGIFDNEHI-GIAYGMGITAENVAKQWKISREEQDTFAAASHERALAA 185 Query: 214 QSKGCFRAEIVPVTTTVLDD----------KGDRKTITVSQDEGVRPSTTMEGLAKLKPA 263 G F+ EI P LDD K D + I DEG RP +T+E L KLKP Sbjct: 186 IKAGEFKDEITPFK---LDDHYPDLATRSIKTDSRLIDT--DEGPRPGSTVEVLGKLKPV 240 Query: 264 FKDG---GSTTAGNSSQVSDGAAAVLLARRSKAEELGLPILGVLRSYAVVGVPPDIMGIG 320 F++G GS TAGNSSQ SDGA AVLLA + +E GL + SY+V GV PDIMGIG Sbjct: 241 FRNGQFGGSVTAGNSSQTSDGAGAVLLASEAAIKEYGLTPIARFVSYSVAGVRPDIMGIG 300 Query: 321 PAYAIPAALQKAGLTVNDIDIFEINEAFASQALYCVEKLGIPAEKVNPLGGAIALGHPLG 380 P AIP AL++AG+T + +D E+NEAFA+Q+L ++ LG+ K+NPLGGAIALGHPLG Sbjct: 301 PKEAIPKALKQAGMTQDQLDWIELNEAFAAQSLAVIKDLGLDPSKINPLGGAIALGHPLG 360 Query: 381 CTGARQVVTLLNELKRRGRRAYGVVSMCIGTGMGAAAVFE 420 TGA + TL++ ++RR ++ YG+V+MCIGTGMGAA +FE Sbjct: 361 ATGAIRAATLVHGMRRR-KQKYGMVTMCIGTGMGAAGIFE 399 Lambda K H 0.316 0.133 0.378 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 437 Number of extensions: 20 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 424 Length of database: 401 Length adjustment: 31 Effective length of query: 393 Effective length of database: 370 Effective search space: 145410 Effective search space used: 145410 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory