Align subunit of β-ketoadipyl CoA thiolase (EC 2.3.1.174; EC 2.3.1.16) (characterized)
to candidate N515DRAFT_3009 N515DRAFT_3009 acetyl-CoA C-acetyltransferase
Query= metacyc::MONOMER-3207 (400 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3009 N515DRAFT_3009 acetyl-CoA C-acetyltransferase Length = 427 Score = 178 bits (452), Expect = 2e-49 Identities = 140/435 (32%), Positives = 216/435 (49%), Gaps = 54/435 (12%) Query: 4 VFICDAIRTPIGRFGGALAGVRADDLAAVPLKALIEPNPAVQWDQVDEVFFGCANQAGED 63 V + IR P R A A V ++ L AL+E + +++ EV G + + Sbjct: 8 VGVIGGIRIPFCRNNTAYADVGNFGMSVKVLGALVE-RFRLHGEELGEVAMGAVIKHSSE 66 Query: 64 NRNVARMALLLAGLPESIPGVTLNRLCASGMDAIGTAFRAIASGEMELAIAGGVESMSRA 123 N+AR A+L +GL + PG+T R C + +D IA+G++E IAGG ++ S Sbjct: 67 -WNLAREAVLSSGLAPTTPGITTARACGTSLDNAIIIANKIAAGQIEAGIAGGSDTTSDV 125 Query: 124 PFVMGKAESGYSRNMKLEDTTIGWR----------FINPLMKSQYGVD------SMPETA 167 P V+G+ + + + + GW+ + L S GV SM + Sbjct: 126 PIVLGER---FRKRLLAINRAKGWQDKMAAFTRGFSLKELKPSFPGVAEPRTGMSMGDHC 182 Query: 168 DNVADDYQVSRADQDAFALRSQQKAAAAQAAGFFAEEIVPVRIAHKKGETIVERDEHLRP 227 + +A ++ + R QD AL S QK AAA AGFF + +VP R ++RD LR Sbjct: 183 ERMAKEWHIGREAQDRLALESHQKLAAAYEAGFFEDLVVPFR--------GLKRDGFLRA 234 Query: 228 ETTLEALTKLKP----VNGPDKTVTAGNASGVNDGAAALILASAEAVKKHGLTPRARVLG 283 ++++E L LKP ++G T+TAGN++G++DGAAA++L S E + GL +A L Sbjct: 235 DSSMEKLGTLKPAFDKISG-HGTLTAGNSTGLSDGAAAVLLGSDEWAARRGLKVQAYFLD 293 Query: 284 MASGGVAPRVMGIG----PVPAVRKLTERLGVAVSDFDVIELNEAFASQGLAVLR----- 334 A V G G P AV ++ R G+ + DFD E++EAFA+Q L LR Sbjct: 294 -AEVAAVDFVHGEGLLMAPTVAVPRMLARHGLTLQDFDFYEIHEAFAAQVLCTLRAWESE 352 Query: 335 -----ELGVAD-----DAPQVNPNGGAIALGHPLGMSGARLVLTALHQLEKSGGRKGLAT 384 LG+ D ++N +G ++A GHP +GAR+V T LE+ G +GL + Sbjct: 353 TYCRNRLGLEQPLGSIDPAKLNVHGSSLAAGHPFAATGARIVATLAKMLEEKGSGRGLIS 412 Query: 385 MCVGVGQGLALAIER 399 +C G G+ +ER Sbjct: 413 ICTAGGMGVTAILER 427 Lambda K H 0.318 0.134 0.383 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 396 Number of extensions: 17 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 400 Length of database: 427 Length adjustment: 31 Effective length of query: 369 Effective length of database: 396 Effective search space: 146124 Effective search space used: 146124 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory