Align Organic acid uptake porter, DctA of 444 aas and 8 - 10 putative TMSs (characterized)
to candidate N515DRAFT_0013 N515DRAFT_0013 aerobic C4-dicarboxylate transport protein
Query= TCDB::Q848I3 (444 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_0013 N515DRAFT_0013 aerobic C4-dicarboxylate transport protein Length = 433 Score = 493 bits (1269), Expect = e-144 Identities = 254/426 (59%), Positives = 330/426 (77%), Gaps = 3/426 (0%) Query: 8 YKSLYFQVIVAIAIGILLGHFYPQTGVALKPLGDGFIKLIKMVIAPIIFCTVVSGIAGMQ 67 ++ YF V+ AI G L+GH+ P+TGVALKPLGDGFI L+KM+I PIIF TVV GIAG+ Sbjct: 5 FRHFYFWVLAAIVAGGLIGHYAPETGVALKPLGDGFIALVKMLIGPIIFLTVVLGIAGVS 64 Query: 68 NMKSVGKTGGYALLYFEIVSTIALLIGLVVVNVVQPGNGMHIDVSTLDASKVAAYVTAGK 127 ++K VG+ G A+LYFE+VS+ AL+IGLVVVN ++PG G + ++LDA+ VA Y A Sbjct: 65 DVKKVGRVGAKAILYFEVVSSFALVIGLVVVNTLKPGAGFNATPASLDATAVAKYANAAH 124 Query: 128 DQSIVGFILNVIPNTIVGAFA-NGDILQVLMFSVIFGFALHRLGAYGKPVLDFIDRFAHV 186 +Q V F+L++IP T AF+ +GD+LQVL+ +++FGFA+ LG +PV+ F++ + V Sbjct: 125 EQGTVPFLLHLIPKTFSDAFSGDGDLLQVLLLALLFGFAMIHLGERARPVMTFLEALSKV 184 Query: 187 MFNIINMIMKLAPIGALGAMAFTIGAYGVGSLVQLGQLMICFYITCVLFVLVVLGAICRA 246 F I+ MIM+LAP+GA+GAMAFTIG YGV SL L +LM FY+ C+LFV+VVLGAI RA Sbjct: 185 FFRIMGMIMRLAPLGAMGAMAFTIGKYGVHSLGPLLKLMGSFYLACILFVVVVLGAIARA 244 Query: 247 HGFSVLKLIRYIREELLIVLGTSSSESALPRMLIKMERLGAKKSVVGLVIPTGYSFNLDG 306 GFS+ K +RYIREELL+VLGTSSSESAL ++ K+ERLG KSVVGLV+P+GYSFNLDG Sbjct: 245 TGFSIFKFLRYIREELLLVLGTSSSESALVPLMQKLERLGCSKSVVGLVVPSGYSFNLDG 304 Query: 307 TSIYLTMAAVFIAQATDTHMDITHQITLLLVLLLSSKGAAGVTGSGFIVLAATLSAVGHL 366 T+IYLTMAA+F+AQA + ++ ++TLL V +L+SKGA+GVTG+GFI LAATL+ V + Sbjct: 305 TNIYLTMAAIFVAQALGVELTLSQELTLLAVAMLTSKGASGVTGAGFITLAATLAVVPSV 364 Query: 367 PVAGLALILGIDRFMSEARALTNLVGNAVATVVVAKWVKELDEDQLQAELASGGRAISDT 426 PVAGL+LILGIDRFMSEARA+TN++GN VATVVV+ W KELD LQA L GR+ S Sbjct: 365 PVAGLSLILGIDRFMSEARAITNIIGNGVATVVVSHWEKELDHASLQAAL--DGRSPSPA 422 Query: 427 REEDDL 432 +E L Sbjct: 423 ADEAPL 428 Lambda K H 0.326 0.142 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 603 Number of extensions: 23 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 444 Length of database: 433 Length adjustment: 32 Effective length of query: 412 Effective length of database: 401 Effective search space: 165212 Effective search space used: 165212 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory