Align L-arabinose ABC transporter, ATP-binding protein AraG; EC 3.6.3.17 (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= CharProtDB::CH_014279 (504 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 327 bits (839), Expect = 5e-94 Identities = 189/480 (39%), Positives = 289/480 (60%), Gaps = 9/480 (1%) Query: 8 LSFRGIGKTFPGVKALTDISFDCYAGQVHALMGENGAGKSTLLKILSGNYAPTTGSVVIN 67 L RG+GK F AL + AG+VHALMG+NGAGKSTL+K+L+G P GSV ++ Sbjct: 13 LQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSVELD 72 Query: 68 GQEMSFSDTTAALNAGVAIIYQELHLVPEMTVAENIYLGQLPHKGGI--VNRSLLNYEAG 125 G+ ++ S A G+ +YQE++L P ++VAEN+Y G+ P + + ++ + A Sbjct: 73 GRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRDGAR 132 Query: 126 LQLKHLGMDIDPDTPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIDNLFRV 185 L+ L +++D D PL + QMV IA+AL +A+++ DEPTSSL E+ LFRV Sbjct: 133 SLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRELFRV 192 Query: 186 IRELRKEGRVILYVSHRMEEIFALSDAITVFKDGRYVKTFTDMQQVDHDALVQAMVGRDI 245 I +LR+ G IL+V+H +++++A+SD ITV +DG V + + + ALV AMVGRD+ Sbjct: 193 IAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYA-VADLPPAALVNAMVGRDL 251 Query: 246 GDIYGWQ----PRSYGEERLRLDAVKAPGVRTPISLAVRSGEIVGLFGLVGAGRSELMKG 301 + G P + + G P+ L VR GE++GL GL+G+GR+EL + Sbjct: 252 PTVAGADAERAPPPDAPPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLGSGRTELARL 311 Query: 302 MFGGTQITAGQVYIDQQPIDIRKPSHAIAAGMMLCPEDRKAEGIIPVHSVRDNINISARR 361 +FG + G++ I + ++++ P+ A+ G+ LCPE+RK +GI+ SVR+NI ++ + Sbjct: 312 LFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENIVLALQA 371 Query: 362 KHVLGGCVINNGWEENNADHHIRSLNIKTPGAEQLIMNLSGGNQQKAILGRWLSEEMKVI 421 + G ++ ++ A +++L IK E + LSGGNQQK +L RWL E +++ Sbjct: 372 RQGWRG--MSRARQDELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVTEPRLL 429 Query: 422 LLDEPTRGIDVGAKHEIYNVIYALAAQGVAVLFASSDLPEVLGVADRIVVMREGEIAGEL 481 +LDEPTRGIDV AK E+ + A G+AVLF S++ E+ DRI VMRE AGEL Sbjct: 430 ILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERRKAGEL 489 Lambda K H 0.319 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 653 Number of extensions: 35 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 505 Length adjustment: 34 Effective length of query: 470 Effective length of database: 471 Effective search space: 221370 Effective search space used: 221370 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory