Align Probable 2-ketoarginine decarboxylase AruI; 2-oxo-5-guanidinopentanoate decarboxylase; 5-guanidino-2-oxopentanoate decarboxylase; EC 4.1.1.75 (characterized)
to candidate N515DRAFT_0378 N515DRAFT_0378 acetolactate synthase, large subunit (EC 2.2.1.6)
Query= SwissProt::Q9HUI8 (559 letters) >FitnessBrowser__Dyella79:N515DRAFT_0378 Length = 547 Score = 206 bits (525), Expect = 1e-57 Identities = 165/537 (30%), Positives = 252/537 (46%), Gaps = 25/537 (4%) Query: 30 LTAGQALVRLLANYGVDTVFGIPGVHTLELYRGLPGSGIRHVLTRHEQGAGFMADGYARV 89 + A V+ L GV +FG+PG L+L L S I ++TRHEQ AGFMA + R+ Sbjct: 1 MNAAALFVKALEAEGVRRIFGVPGEENLDLVEALRDSKIELIVTRHEQAAGFMAATWGRL 60 Query: 90 SGKPGVCFVITGPGVTNVATAIGQAYADSVPLLVISSVNHSASLGKGWGCLHETQDQRAM 149 +G+ GV GPG TN+ TA A ++P+L+I+ + +G L + D M Sbjct: 61 TGEAGVALSTLGPGATNLVTAAAYAQLGAMPMLMITGQKPIRTHKQG---LFQLVDVVDM 117 Query: 150 TAPITAFSALALSPEQLPELIARAYAVFDSERPRPVHISIPLDVLAAPV--AHDWSAAVA 207 P+T ++ +S +P + A+ + ERP VH+ +P D+ V A A Sbjct: 118 MQPLTKYTRQIVSAPTIPARVREAFRRAEEERPGAVHLELPEDIARDSVDEAILLPTEYA 177 Query: 208 RRPGRGVPCSEALRAAAERLAAARRPMLIAGGGA--LAAGEALAALSERLAAPLFTSVAG 265 RRP P AL A E + AA+ P+L+ G A AL ++L P FT+ G Sbjct: 178 RRPS---PDDAALVQAGEAITAAKHPILMIGAAANRQRTAVALRTFIDKLGIPFFTTQMG 234 Query: 266 KGLLPPDAPLNAGASLCVAPG---WEMIAEADLVLAVGTEMAD-TDFWRERLPLSGELIR 321 KG++ D PL G + ++ G I AD+++ VG ++ + F+ + + +I Sbjct: 235 KGVVDEDHPLWLG-NAALSDGDFVHRAIDAADVIVNVGHDVVEKPPFFMHKGRRT--VIH 291 Query: 322 VDIDPRKFNDFYPSAVALRGDARQTLEALLVRLPQEARDSAPAAARVARLRAEIRAAHA- 380 ++ + + Y + + GD T+E L L +A + +V A HA Sbjct: 292 INFSSAEVDTVYFPQIEVVGDIAHTVERLTDALTPQAHWNFKYFDQVREAFHRQLAEHAD 351 Query: 381 -PLQALHQA-ILDRIAAALPADAFVSTD--MTQLAYTGNYAFASRAPRSWLHPTGYGTLG 436 P +H ++ +P D + D M ++ Y Y +R P + L T+G Sbjct: 352 DPRFPIHPVRLVADTRRYMPDDGVLCLDNGMYKIWYARYY--RARQPNTVLLDNALATMG 409 Query: 437 YGLPAGIGAKLGAPQRPGLVLVGDGGFLYTAQELATASEELDSPLVVLLWNNDALGQIRD 496 GLP+ + AKL P+R L + GDGGF+ AQEL TA L LV+LL +DA G IR Sbjct: 410 AGLPSAMAAKLVYPERKVLAICGDGGFMMNAQELETA-VRLKMDLVILLLRDDAYGMIRW 468 Query: 497 DMLGLDIEPVGVLPRNPDFALLGRAYGCAVRQPQDLDELERDLRAGFGQSGVTLIEL 553 + G+ NPDF A+G +P+ D L+ F Q GV LI+L Sbjct: 469 KQAEMGYADFGMQFSNPDFVKFAEAHGAHGHRPESADAFLPTLKRAFEQGGVHLIDL 525 Lambda K H 0.321 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 641 Number of extensions: 35 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 547 Length adjustment: 36 Effective length of query: 523 Effective length of database: 511 Effective search space: 267253 Effective search space used: 267253 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory