Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate N515DRAFT_2488 N515DRAFT_2488 succinate-semialdehyde dehydrogenase / glutarate-semialdehyde dehydrogenase
Query= BRENDA::A0A0J9X1M8 (465 letters) >FitnessBrowser__Dyella79:N515DRAFT_2488 Length = 463 Score = 396 bits (1018), Expect = e-115 Identities = 205/457 (44%), Positives = 290/457 (63%), Gaps = 4/457 (0%) Query: 1 MAYQTIYPYTNEVLHTFDNMTDQGLADVLERAHLLYKKWRKEDHLEERKAQLHQVANILR 60 M+Y TI PYT E + TF + TD + L++A +++ W K+ + R L + A++LR Sbjct: 1 MSYATINPYTGETVKTFPSATDAEVTQALDQAQAMFEAW-KDVGVAARVKVLQKAADLLR 59 Query: 61 RDRDKYAEIMTKDMGKLFTEAQGEVDLCADIADYYADKADEFLMSTPLET---DSGQAYY 117 +YA+++T +MGK+ EA+GEV+LCA I +YYAD A++ L L + Q++ Sbjct: 60 ESHTQYAKVLTLEMGKVIGEAEGEVELCAQILEYYADHAEQLLAPEKLSSRHPSYTQSWV 119 Query: 118 LKQSTGVILAVEPWNFPYYQIMRVFAPNFIVGNPMVLKHASICPRSAQSFEELVLEAGAE 177 G++LAVEPWNFPYYQI+R+ AP GN ++LKHAS P+ A +FE L EAG Sbjct: 120 EHVPQGILLAVEPWNFPYYQIVRIAAPQLAAGNVLILKHASNVPQCAAAFERLFREAGLP 179 Query: 178 AGSITNLFISYDQVSQVIADKRVVGVCLTGSERGGASIAEEAGKNLKKTTLELGGDDAFI 237 G TNL+ + DQ+ +I D RV GV LTGSE GA +A +AG+ LKK+T+ELGG DAF+ Sbjct: 180 QGGFTNLYATRDQLKAIIEDPRVQGVALTGSEGAGAVVAAQAGQALKKSTMELGGADAFV 239 Query: 238 ILDDADWDQLEKVLYFSRLYNAGQVCTSSKRFIVLDKDYDRFKELLTKVFKTAKWGDPMD 297 +L DAD D+ + R +NAGQVC SSKR IV+D+ YD F E + GDPM+ Sbjct: 240 VLADADLDKAVQWAVTGRHWNAGQVCCSSKRIIVVDEIYDAFLEKYKAGVARLRAGDPME 299 Query: 298 PETTLAPLSSAQAKADVLDQIKLALDHGAELVYGGEAIDHPGHFVMPTIIAGLTKDNPIY 357 P TTLAP+SS A D+ Q++ A+ HGA++ G + G F P +++ ++ DNP Sbjct: 300 PSTTLAPMSSRGAVDDLKKQLEQAVAHGAKVEVIGAEVPSRGAFFRPVLLSHVSDDNPAR 359 Query: 358 YQEIFGPVGEIYKVSSEEEAIEVANDSNYGLGGTIFSSNQEHAKAVAAKIETGMSFINSG 417 Y E FGPV ++ + E +AI +ANDS +GLGG++F+++ +H VA KI TGM +IN Sbjct: 360 YWEFFGPVSQVIRARDEADAIRIANDSPFGLGGSVFTTDIKHGIEVAKKISTGMVYINHP 419 Query: 418 WTSLPELPFGGIKHSGYGRELSELGFTSFVNEHLIYI 454 +LPFGG++ SGYGREL+ LG FVN LI + Sbjct: 420 TGVAADLPFGGVRRSGYGRELTGLGIKEFVNHKLIAV 456 Lambda K H 0.317 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 540 Number of extensions: 17 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 465 Length of database: 463 Length adjustment: 33 Effective length of query: 432 Effective length of database: 430 Effective search space: 185760 Effective search space used: 185760 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory