Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate N515DRAFT_3729 N515DRAFT_3729 aminomuconate-semialdehyde/2-hydroxymuconate-6-semialdehyde dehydrogenase
Query= BRENDA::P23883 (495 letters) >FitnessBrowser__Dyella79:N515DRAFT_3729 Length = 483 Score = 326 bits (836), Expect = 1e-93 Identities = 197/485 (40%), Positives = 274/485 (56%), Gaps = 14/485 (2%) Query: 15 SLAIENRLFINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSAARGVFERGD 74 SL + N I+G A + E +P T A D+D A++AA V Sbjct: 3 SLRLAN--LIDGRLQAPRQERWLEVFEPATGEVFAHCPESSFADVDAAVAAA--VAAAPG 58 Query: 75 WSLSSPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAARAIRWYAEA 134 W+ + +R +L +LADL+EA +E A LE+ D+GKP+ + DIP A +R++A A Sbjct: 59 WAATPSEQRARLLQRLADLIEARLDEFAALESRDSGKPLSLARSLDIPRAVSNLRYFAAA 118 Query: 135 IDKVYGEVATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAGNSVILKPSE 194 I E + +R+P+GV+A I PWN PL L WK+ PALAAGN+V+ KPSE Sbjct: 119 IVPWSSESHAMELGAINYTLRQPLGVVACISPWNLPLYLFTWKIAPALAAGNAVVAKPSE 178 Query: 195 KSPLSAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGSTRTGKQLLK 254 +P +A L L+ EAG P GVLN+V G G E GQAL H D+ A++FTGSTRTG Q+ Sbjct: 179 ITPCTAALLGELSIEAGFPPGVLNIVQGRGPEVGQALVEHRDVKAVSFTGSTRTGAQIAA 238 Query: 255 DAGDSNMKRVWLEAGGKSANIVFADCPDLQQAASAT-AAGIFYNQGQVCIAGTRLLLEES 313 A K++ LE GGK+ IVFAD DL A T F NQG++C+ G+RLL++ S Sbjct: 239 -AAAPRFKKLSLELGGKNPAIVFADA-DLSDANLDTIVRSGFANQGEICLCGSRLLVQRS 296 Query: 314 IADEFLALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKGQLLLDGRNA 373 I D F + + + G P + AT +G L+ H D V I + ++G +L G +A Sbjct: 297 IYDAFRERYLAKVRALRVGDPREAATDLGALVSREHFDKVTGCIAQARAEGGRVLCGGDA 356 Query: 374 ----GLAAA---IGPTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDSQYGLG 426 G A + PT+ + P + +++EIFGPV+ + F E QAL +AN + YGL Sbjct: 357 LALPGPLAGGWYVAPTVIEGLGPETATNQQEIFGPVVTLIPFDDEAQALAIANGTGYGLA 416 Query: 427 AAVWTRDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALEKFTEL 486 A++WT DLSRAHR +L G V++N + D+ PFGG KQSG GR+ + AL FTE Sbjct: 417 ASLWTTDLSRAHRFGAQLDFGIVWINCWLLRDLRTPFGGAKQSGVGREGGVEALRFFTEP 476 Query: 487 KTIWI 491 K I I Sbjct: 477 KNICI 481 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 549 Number of extensions: 23 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 483 Length adjustment: 34 Effective length of query: 461 Effective length of database: 449 Effective search space: 206989 Effective search space used: 206989 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory