Align Aspartate-proton symporter; L-aspartate transporter (characterized)
to candidate N515DRAFT_4366 N515DRAFT_4366 Amino acid transporter
Query= SwissProt::O07002 (520 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_4366 N515DRAFT_4366 Amino acid transporter Length = 554 Score = 350 bits (899), Expect = e-101 Identities = 193/525 (36%), Positives = 299/525 (56%), Gaps = 21/525 (4%) Query: 1 MSKQGNFQKSMSLFDLILIGMGAIFGSAWLFAVSNVASKAGPSGAFSWILGGAIILLIGL 60 MS ++ + F L+L G+G+I GS WLF A AGP ++W+LG AII+ I L Sbjct: 1 MSSSSPIRRDVGPFALMLTGLGSIIGSGWLFGAWRAAGLAGPGAIWAWVLGAAIIMTIAL 60 Query: 61 VYAELGAALPRTGGIIRYPVYSHGHLVGYLISFVTIVAYTSLISIEVTAVRQYVAYWFPG 120 YAELGA P +GG++RY YSHG LVG++ ++ +A S+I +E A QY+A W P Sbjct: 61 TYAELGAMFPESGGMVRYSHYSHGSLVGFIGAWANWIAIVSVIPVEAEASVQYMASW-PW 119 Query: 121 LTIK--------GSDSPTISGWILQFALLCLFFLLNYWSVKTFAKANFIISIFKYIVPIT 172 + G + G + L+ ++FLLN+WSVK FA++N I+IFK IVP Sbjct: 120 KWAQDLYMHMPDGHGELSEPGLGIAAVLVIVYFLLNFWSVKLFARSNTAITIFKLIVPAA 179 Query: 173 IIIVLI---FHFQPENLSVQGFA-PFGFTGIQAAISTGGVMFAYLGLHPIVSVAGEVQNP 228 I LI FH + ++ V G A + A++T G++F++ G V++AGE NP Sbjct: 180 TGIALIASGFHSENFSVGVHGDAHAIDLAAVLTAVATAGIVFSFNGFQSPVNLAGEAHNP 239 Query: 229 KRNIPIALIICIIVSTIIYTVLQVTFIGAIPTETL-KHGWPAIGREFSLPFKDIAVMLGL 287 ++IP A+I I+++TI+Y +LQ+ ++G++P + L K GW I +F PF ++A+++ L Sbjct: 240 GKSIPFAVIGSIVLATIVYVILQLAYLGSVPPDLLAKAGWHGI--DFRSPFAELAIIVNL 297 Query: 288 GWLATLVILDAILSPGGNGNIFMNTTSRLVYAWARNGTLFGIFSKVNKDTGTPRASLWLS 347 WLA L+ +DA +SP G G + TT+R++Y RNGTL I +++ G PR ++W + Sbjct: 298 HWLAMLLYVDAFISPSGTGITYTATTARMIYGMERNGTLPKILGRIHPKWGIPRPAMWFN 357 Query: 348 FALSIFWTLPFPSWNALVNVCSVALILSYAIAPISSAALRVNAKDLNRPFYLKGMSIIGP 407 A+S + F W L V SVA I+SY P+S+ LR A +L+RP + G+ I+ Sbjct: 358 LAVSYLFLFKFRGWGTLAAVISVATIISYLTGPVSAMTLRRTAPNLHRPLRIAGLPILAG 417 Query: 408 LSFIFTAFIVYWSGWKTVSWLLGSQLVMFLIYLCFSKYTPKEDVSLAQQLKSAWWLIGFY 467 ++FI ++YW+ W ++ +V +Y + D +QLK AWWLI + Sbjct: 418 IAFIMATELLYWAKWPLTGEIILLMVVALPVYFFYQFKAGWHD--FGRQLKGAWWLIFYL 475 Query: 468 IMMLIFSYIGS--FGHGLGIISNPVDLILVAIGSLAIYYWAKYTG 510 + + S+ GS FG G G +S +DL +VA+ L Y W +G Sbjct: 476 PTLALVSWAGSTMFG-GKGYLSYGMDLAVVAVVGLVFYLWGVKSG 519 Lambda K H 0.328 0.143 0.451 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 986 Number of extensions: 59 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 554 Length adjustment: 35 Effective length of query: 485 Effective length of database: 519 Effective search space: 251715 Effective search space used: 251715 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory