GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Dyella japonica UNC79MFTsu3.2

Align Aconitate hydratase A; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; Iron-responsive protein-like; IRP-like; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate N515DRAFT_0029 N515DRAFT_0029 aconitase /2-methylcitrate dehydratase (trans-methylaconitate-forming)

Query= SwissProt::Q937N8
         (869 letters)



>FitnessBrowser__Dyella79:N515DRAFT_0029
          Length = 869

 Score = 1511 bits (3912), Expect = 0.0
 Identities = 756/873 (86%), Positives = 808/873 (92%), Gaps = 11/873 (1%)

Query: 1   MNSANRKPLPGTKLDYFDARAAVEAIQPGAYDKLPYTSRVLAENLVRRCDPATLTDSLLQ 60
           MN+  R+ L GT LDYFDARAAVEAIQPGAYD LPYTSRVLAENLVRRCDPA L +SL Q
Sbjct: 1   MNTVYRQSLLGTSLDYFDARAAVEAIQPGAYDTLPYTSRVLAENLVRRCDPAILAESLKQ 60

Query: 61  LVGRKRDLDFPWFPARVVCHDILGQTALVDLAGLRDAIADQGGDPAKVNPVVPVQLIVDH 120
           ++ RKR+ DFPWFPARVVCHDILGQTALVDLAGLRDAIAD+GGDPAKVNPVVPVQLIVDH
Sbjct: 61  IIERKRERDFPWFPARVVCHDILGQTALVDLAGLRDAIADRGGDPAKVNPVVPVQLIVDH 120

Query: 121 SLAVECGGFDPDAFAKNRAIEDRRNEDRFHFIDWTKQAFKNVDVIPPGNGIMHQINLEKM 180
           SLAVECGGFDP+AFA+NRAIEDRRNEDRFHFI+WT+QAF+NVDVIPPGNGIMHQINLEKM
Sbjct: 121 SLAVECGGFDPNAFARNRAIEDRRNEDRFHFIEWTRQAFENVDVIPPGNGIMHQINLEKM 180

Query: 181 SPVIHADN-----GVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASWMRLP 235
           SPVI   +     GVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASWMRLP
Sbjct: 181 SPVIQVQHDDQGKGVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASWMRLP 240

Query: 236 DIVGVELTGKRQPGITATDIVLALTEFLRKEKVVGAYLEFRGEGASSLTLGDRATISNMA 295
           DI+GVELTGKRQPGITATDIVLALTEFLR+EKVVGAYLEFRGEGA+SLTLGDRATISNMA
Sbjct: 241 DIIGVELTGKRQPGITATDIVLALTEFLRQEKVVGAYLEFRGEGAASLTLGDRATISNMA 300

Query: 296 PEYGATAAMFFIDEQTIDYLRLTGRTDEQLKLVETYARTAGLWADSLKNAEYERVLKFDL 355
           PEYGATAAMFFID+QT+DYLRLTGR+DEQ++LVETYA+ AGLWAD+L  A+YER L FDL
Sbjct: 301 PEYGATAAMFFIDDQTLDYLRLTGRSDEQVRLVETYAKAAGLWADTLAAAQYERTLSFDL 360

Query: 356 SSVVRNMAGPSNPHKRLPTSALAERGIAVDLDKASAQEAEGLMPDGAVIIAAITSCTNTS 415
           SSVVRNMAGPSNPHKRLPT+ LA RGIA        QE  G MPDGAVIIAAITSCTNTS
Sbjct: 361 SSVVRNMAGPSNPHKRLPTADLAARGIA-----GQWQEQPGQMPDGAVIIAAITSCTNTS 415

Query: 416 NPRNVIAAALLARNANARGLARKPWVKSSLAPGSKAVELYLEEANLLPDLEKLGFGIVAF 475
           NPRNVIAAALLARNANARGL RKPWVKSSLAPGSKAVELYL+EANLLP+LEKLGFGIVAF
Sbjct: 416 NPRNVIAAALLARNANARGLVRKPWVKSSLAPGSKAVELYLKEANLLPELEKLGFGIVAF 475

Query: 476 ACTTCNGMSGALDPKIQQEIIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYA 535
           ACTTCNGMSGALDP IQQEI++RDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYA
Sbjct: 476 ACTTCNGMSGALDPAIQQEIVERDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYA 535

Query: 536 IAGTIRFDIEKDVLGTDQDGKPVYLKDIWPSDEEIDAIVAKSVKPEQFRKVYEPMFAITA 595
           IAGTIRFDIE+DVLG D +G+PV LKDIWPSDEEID IVA SVKPEQFRKVYEPMFA T 
Sbjct: 536 IAGTIRFDIEQDVLGIDANGQPVTLKDIWPSDEEIDTIVAASVKPEQFRKVYEPMFARTG 595

Query: 596 ASGESVSPLYDWRPQSTYIRRPPYWEGALAGERTLKALRPLAVLGDNITTDHLSPSNAIM 655
            SG   +PLYDWR QSTYIRRPPYWEGALAGERTLK +R LAVLGDNITTDHLSPSNAIM
Sbjct: 596 RSGTRAAPLYDWRAQSTYIRRPPYWEGALAGERTLKGMRALAVLGDNITTDHLSPSNAIM 655

Query: 656 LNSAAGEYLARMGLPEEDFNSYATHRGDHLTAQRATFANPTLINEMAVVDGQVKKGSLAR 715
            +SAAGEYLARMGLPEEDFNSYATHRGDHLTAQRATFANPTL+NEMAVVDG+VKKGSLAR
Sbjct: 656 ADSAAGEYLARMGLPEEDFNSYATHRGDHLTAQRATFANPTLLNEMAVVDGEVKKGSLAR 715

Query: 716 IEPEGKVVRMWEAIETYMDRKQPLIIIAGADYGQGSSRDWAAKGVRLAGVEVIVAEGFER 775
           +EPEGKV+RMWEAIETYM+RKQPLI+IAGADYGQGSSRDWAAKGVRLAGVE I AEGFER
Sbjct: 716 VEPEGKVMRMWEAIETYMERKQPLIVIAGADYGQGSSRDWAAKGVRLAGVEAIAAEGFER 775

Query: 776 IHRTNLIGMGVLPLEFKPGVNRLTLGLDGTETYDVIGERQPRATLTLVVNRKNGERVEVP 835
           IHRTNLIGMGVLPLEF+PG +R TLG+DGTET+DV G R PRA LTLV++R+NGERVEVP
Sbjct: 776 IHRTNLIGMGVLPLEFQPGTDRKTLGIDGTETFDVTGARTPRAQLTLVIHRRNGERVEVP 835

Query: 836 VTCRLDSDEEVSIYEAGGVL-HFAQDFLESSRA 867
           VTCRLD+ EEVSIYEAGGVL  FAQDFLE+++A
Sbjct: 836 VTCRLDTAEEVSIYEAGGVLQRFAQDFLEAAQA 868


Lambda     K      H
   0.318    0.135    0.398 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2239
Number of extensions: 86
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 869
Length of database: 869
Length adjustment: 42
Effective length of query: 827
Effective length of database: 827
Effective search space:   683929
Effective search space used:   683929
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory