Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 350 bits (897), Expect = e-101 Identities = 226/508 (44%), Positives = 303/508 (59%), Gaps = 20/508 (3%) Query: 13 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECH 72 +L R + K F AL V+L AGEVHALMG+NGAGKSTL+K+L+G D G Sbjct: 12 VLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGS-VE 70 Query: 73 IDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGL-VARGDMVRAC 131 +DG+ + P A+ G+ +YQE++L PNLSVAEN+Y GR +RR L + VR Sbjct: 71 LDGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRDG 130 Query: 132 APTLAR-LGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLF 190 A +L R L + A + S +A RQ+V IARA+ AR+L++DEPT+ L E LF Sbjct: 131 ARSLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRELF 190 Query: 191 ALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRD 250 +I QLR GMAIL+++H + ++ ++DR+TVLRDGC VG A L AALV MVGRD Sbjct: 191 RVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVGRD 250 Query: 251 LSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDL--RAGEVLGLAGLVGAGRTELAR 308 L +A + ++ G R K DL R GE+LGL GL+G+GRTELAR Sbjct: 251 LPTVAGADAERAPPPDAPPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLGSGRTELAR 310 Query: 309 LVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHE 368 L+FG D RGE+RI G V L P A+ G+A E+RK G+ + SV E Sbjct: 311 LLFGLDRAERGELRIG-----GERVELKH--PADAVVRGLALCPEERKTDGIVAELSVRE 363 Query: 369 NINLIVAARDAL-GLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSR 427 NI L + AR G+ R + R+ +A LGI+ A + VG LSGGNQQKVML+R Sbjct: 364 NIVLALQARQGWRGMSRARQDELARQLVQA---LGIKAADIETPVGLLSGGNQQKVMLAR 420 Query: 428 LLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVM 487 L +PR+LILDEPTRG+D+ AK E+ + A +G+A+L IS+E E+ CDR+ VM Sbjct: 421 WLVTEPRLLILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVM 480 Query: 488 REGTLAGEVRPAGSAAETQERIIALATG 515 RE AGE+ P GS T+ R++A+ G Sbjct: 481 RERRKAGEL-PGGS---TEARVLAMIAG 504 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 736 Number of extensions: 35 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 505 Length adjustment: 35 Effective length of query: 505 Effective length of database: 470 Effective search space: 237350 Effective search space used: 237350 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory