Align Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= SwissProt::Q8G847 (513 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 427 bits (1098), Expect = e-124 Identities = 228/501 (45%), Positives = 331/501 (66%), Gaps = 10/501 (1%) Query: 6 PIVVM-KGITIEFPGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKINAGSI 64 P+V+ +G+ F ALDGVDL L GEVHALMG+NGAGKST+IK LTGV + + GS+ Sbjct: 10 PVVLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSV 69 Query: 65 MVDGKPQQFNGTLDAQNAGIATVYQEVNLCTNLSVGENVMLGH--EKRGPFGIDWKKTHE 122 +DG+ + ++AQ GI TVYQEVNLC NLSV EN+ G +R IDW++ + Sbjct: 70 ELDGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRD 129 Query: 123 AAKKYLAQMGLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRD 182 A+ L Q+ LE +D PL S +A++Q+VAIARA+ ++A+VLILDEPTSSLD EVR+ Sbjct: 130 GARSLLRQLHLE-LDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRE 188 Query: 183 LFAIMRKVRDSGVAILFVSHFLDQIYEITDRLTILRNGQFIKEVMTKDTPRDELIGMMIG 242 LF ++ ++R+ G+AILFV+HFLDQ+Y ++DR+T+LR+G + E D P L+ M+G Sbjct: 189 LFRVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVG 248 Query: 243 KSAAELSQIGAKKARREITPGEKPIVDVKGLGKKGTINPVDVDIYKGEVVGFAGLLGSGR 302 + +L + A R P P +D +GLG +G ++PVD+ + +GE++G GLLGSGR Sbjct: 249 R---DLPTVAGADAERAPPPDAPPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLGSGR 305 Query: 303 TELGRLLYGADKPDSGTYTLNGKKVNISDPYTALKNKIAYSTENRRDEGIIGDLTVRQNI 362 TEL RLL+G D+ + G + G++V + P A+ +A E R+ +GI+ +L+VR+NI Sbjct: 306 TELARLLFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENI 365 Query: 363 LIALQATRGMFKPIPKKEADAIVDKYMKELNVRPADPDRPVKNLSGGNQQKVLIGRWLAT 422 ++ALQA +G ++ + + D + + ++ L ++ AD + PV LSGGNQQKV++ RWL T Sbjct: 366 VLALQARQG-WRGMSRARQDELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVT 424 Query: 423 HPELLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSELEEVVRLSDDIEVLKDRH 482 P LLILDEPTRGID+ AK E+ V A GM V+FIS+E E+ R D I V+++R Sbjct: 425 EPRLLILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERR 484 Query: 483 KIAEIENDDTVSQATIVETIA 503 K E+ T +A ++ IA Sbjct: 485 KAGELPGGST--EARVLAMIA 503 Lambda K H 0.316 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 660 Number of extensions: 36 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 505 Length adjustment: 34 Effective length of query: 479 Effective length of database: 471 Effective search space: 225609 Effective search space used: 225609 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory