Align ABC-type sugar transport system, permease component protein (characterized, see rationale)
to candidate N515DRAFT_3233 N515DRAFT_3233 xylose ABC transporter membrane protein
Query= uniprot:D8J112 (347 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3233 N515DRAFT_3233 xylose ABC transporter membrane protein Length = 380 Score = 178 bits (451), Expect = 2e-49 Identities = 118/371 (31%), Positives = 187/371 (50%), Gaps = 59/371 (15%) Query: 33 ARQKLLAF--ASLLLMILFFSFASPNFMEVDNLVSILQSTAVNGVLAIACTYVIITSGID 90 AR K+LA A + + F +F+ N+ ++ + A+ G+LA +VII ID Sbjct: 11 ARYKILALLLAVAAIWVFFHVATGGDFVTARNVSNLFRQMAITGMLACGMVFVIIAGEID 70 Query: 91 LSVGTMMTFCAVMAGVVLTNWGMPLPLGIAAAIFFGALSGWISGMVIAKLKVPPFIATLG 150 LSVG+++ + V+ N G P+ I A + G L G +G + +L+VP FI LG Sbjct: 71 LSVGSLLGLLGGVVAVLTVNQGWSTPVAIVAVLGLGVLIGLFNGFWVTRLRVPSFIVGLG 130 Query: 151 MMMLLKGLSLVISGTRPI--------YFNDTEGFSAIAQDSLIGDLIPSLPIPNAVL--- 199 M+ +G+ L + + I Y +G+ + +++G I ++ + AVL Sbjct: 131 GMLAFRGVLLGTTHSATIAPVPADLVYLG--QGYVSPLWSTVLGVAIFAVVVALAVLRRR 188 Query: 200 ---------------ILFLVAIGASI-----------------------------ILNKT 215 +L +VAIGA++ + ++T Sbjct: 189 RRAQLQIRQLPWWADLLKVVAIGAALGVFVATLNSYGGIPLPVLILVALLAVFSYLASQT 248 Query: 216 VFGRYTFALGSNEEALRLSGVKVDFWKVAVYTFSGAICGIAGLIIASRLNSAQPALGQGY 275 V GR+ +A+G N EA RLSGV V K+ V+ G +C AG++ +RL + P+ G Sbjct: 249 VLGRHIYAVGGNLEATRLSGVNVARVKLVVFGIMGLMCAFAGIVNTARLAAGSPSAGTNG 308 Query: 276 ELDAIAAVVIGGTSLSGGTGTILGTIIGAFIMSVLVNGLRIMSVAQEWQTVVTGVIIILA 335 ELDAIAA IGG S+ GG GT+ G +IGA +M+ L NG+ +M V WQ +V G I++LA Sbjct: 309 ELDAIAACFIGGASMRGGAGTVHGALIGALVMASLDNGMSMMDVDTYWQYIVKGAILVLA 368 Query: 336 VYLDILRRRRR 346 V++D+L R +R Sbjct: 369 VWVDVLSRPQR 379 Score = 32.0 bits (71), Expect = 3e-05 Identities = 22/70 (31%), Positives = 35/70 (50%), Gaps = 2/70 (2%) Query: 280 IAAVVIGGTSLSGGTGTILGTIIGAFIMSVLVNGLRIMS--VAQEWQTVVTGVIIILAVY 337 + + ++G + G +LGT A I V + + + V+ W TV+ I + V Sbjct: 122 VPSFIVGLGGMLAFRGVLLGTTHSATIAPVPADLVYLGQGYVSPLWSTVLGVAIFAVVVA 181 Query: 338 LDILRRRRRA 347 L +LRRRRRA Sbjct: 182 LAVLRRRRRA 191 Lambda K H 0.326 0.139 0.398 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 300 Number of extensions: 17 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 347 Length of database: 380 Length adjustment: 29 Effective length of query: 318 Effective length of database: 351 Effective search space: 111618 Effective search space used: 111618 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory