GapMind for catabolism of small carbon sources

 

Alignments for a candidate for BPHYT_RS16930 in Dyella japonica UNC79MFTsu3.2

Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein

Query= uniprot:B2SYR5
         (512 letters)



>FitnessBrowser__Dyella79:N515DRAFT_3232
          Length = 513

 Score =  377 bits (969), Expect = e-109
 Identities = 224/519 (43%), Positives = 315/519 (60%), Gaps = 31/519 (5%)

Query: 2   SATLRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDS--G 59
           S       I K F GV+ALDG+   +  G+  GL GENGAGKSTL+K+L G Y   S  G
Sbjct: 5   SCLFEMRGIAKSFGGVKALDGIDLRLRAGECLGLCGENGAGKSTLMKVLSGVYPHGSWDG 64

Query: 60  RVMIDGNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQLPNSLGWVNKREAKR 119
            ++  G  +R  S   S  AGI +IHQEL  VP L+VAEN+ LG           R   R
Sbjct: 65  EILWQGQPLRARSVRDSERAGIVIIHQELMLVPQLSVAENIFLGHEIT-------RPGGR 117

Query: 120 FVRERLEAMGVALDPNAKLRKLSIA---------QRQMVEICKALLRNARVIALDEPTSS 170
              + + A   AL     L  +++A          +Q+ EI KAL + A+++ LDEPTSS
Sbjct: 118 MDYDAMYAKADALLQELGLHDVNVALPAMHYGGGHQQLFEIAKALAKQAKLLILDEPTSS 177

Query: 171 LSHRETEVLFKLVRDLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTR 230
           L+  ETEVL  +V DL+    A IYISH++DE+  +CD   + RDGR IA+ P  E +  
Sbjct: 178 LTSSETEVLLGIVEDLKRRGVACIYISHKLDEVERVCDTVCVIRDGRHIATQPMHE-LDV 236

Query: 231 DTIVSEMVGREISDIYNYSARPLGEVRFAAKGIEGHALAQP-------ASFEVRRGEIVG 283
           DT+++ MVGR++ ++Y      +GEV F A+         P        SF++RRGEI+G
Sbjct: 237 DTLITLMVGRKLENLYPRIEHAIGEVIFEARHATCLDPVNPQRKRVDDVSFQLRRGEILG 296

Query: 284 FFGLVGAGRSELMHLVYGA-DHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGI 342
             GLVGAGR+EL+  ++GA   K   EL L+G+P+K+RS  +AIR G+ + PEDRK  GI
Sbjct: 297 IAGLVGAGRTELVSAIFGAYTGKSSVELFLEGRPLKIRSPADAIRAGLGMVPEDRKRHGI 356

Query: 343 VAMATVSENINISCRRHYLRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQ 402
           V +  V +NI ++   HY   G  +DR++E    +  I   ++KT S    I  LSGGNQ
Sbjct: 357 VPLLGVGDNITLATLDHYAHAG-HIDRQRELVAIEAQIAERRVKTASPALPIARLSGGNQ 415

Query: 403 QKAILSRWL-AEPDLKVVILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVL 461
           QKA+L++ L A P  KV+ILDEPTRG+DVGAK EIY +I++LA +G AIV++SSE+PEVL
Sbjct: 416 QKAVLAKMLLARP--KVLILDEPTRGVDVGAKAEIYRLIFELAAQGVAIVLVSSEMPEVL 473

Query: 462 GVSDRIVVMRQGRISGELTRKDATEQSVLSLALPQSSTA 500
           G++DR++VM +GR+ G+   +  T++ VL+ A+  S+ A
Sbjct: 474 GMADRVLVMGEGRLRGDFPNQGLTQEQVLAAAIDTSARA 512


Lambda     K      H
   0.320    0.136    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 686
Number of extensions: 34
Number of successful extensions: 13
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 512
Length of database: 513
Length adjustment: 35
Effective length of query: 477
Effective length of database: 478
Effective search space:   228006
Effective search space used:   228006
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory