Align Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= SwissProt::P23924 (506 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 305 bits (782), Expect = 2e-87 Identities = 175/509 (34%), Positives = 291/509 (57%), Gaps = 20/509 (3%) Query: 5 ISPPSGEYLLEMRGINKSFPGVKALDNVNLNVRPHSIHALMGENGAGKSTLLKCLFGIYQ 64 +SP + +L+ RG+ K F ALD V+L +R +HALMG+NGAGKSTL+K L G+ + Sbjct: 4 VSPAARPVVLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVER 63 Query: 65 KDSGSIVFQGKEVDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKG--MFVD 122 D GS+ G+ + + EA +GI V+QE+NL SV +N++ GRYP + +D Sbjct: 64 PDRGSVELDGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMID 123 Query: 123 QDKMYQDTKAIFDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTE 182 ++ +++ +L +++D A +G+ V+ QM+ IA+A +A+++I+DEPTSSL E Sbjct: 124 WRQVRDGARSLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDE 183 Query: 183 KEVNHLFTIIRKLKERGCGIVYISHKMEEIFQLCDEITILRDGQWIATQPLEGLDMDKII 242 EV LF +I +L+ERG I++++H +++++ + D IT+LRDG + + L ++ Sbjct: 184 GEVRELFRVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALV 243 Query: 243 AMMVGRSL-------NQRFPDKENKPGDVILEVRHLTSLRQPSIRDVSFDLHKGEILGIA 295 MVGR L +R P + P ++ + L + + V + +GE+LG+ Sbjct: 244 NAMVGRDLPTVAGADAERAPPPDAPPA---IDAQGLGC--RGKLHPVDLQVRRGEMLGLG 298 Query: 296 GLVGAKRTDIVETLFGIREKSSGTITLHGKKINNHTANEAINHGFALVTEERRSTGIYAY 355 GL+G+ RT++ LFG+ G + + G+++ +A+ G AL EER++ GI A Sbjct: 299 GLLGSGRTELARLLFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAE 358 Query: 356 LDIGFNSLISNIRNYKNKVGLLDNSRMKSD--TQWVIDSMRVKTPGHRTQIGSLSGGNQQ 413 L + N +++ + + G SR + D + ++ ++ +K T +G LSGGNQQ Sbjct: 359 LSVRENIVLA----LQARQGWRGMSRARQDELARQLVQALGIKAADIETPVGLLSGGNQQ 414 Query: 414 KVIIGRWLLTQPEILMLDEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGIT 473 KV++ RWL+T+P +L+LDEPTRGIDV AK E+ + A G ++ IS+E EL Sbjct: 415 KVMLARWLVTEPRLLILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWC 474 Query: 474 DRILVMSNGLVSGIVDTKTTTQNEILRLA 502 DRI VM +G + +T + +A Sbjct: 475 DRIAVMRERRKAGELPGGSTEARVLAMIA 503 Lambda K H 0.319 0.137 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 535 Number of extensions: 28 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 505 Length adjustment: 34 Effective length of query: 472 Effective length of database: 471 Effective search space: 222312 Effective search space used: 222312 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory