Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate N515DRAFT_0379 N515DRAFT_0379 Acyl-CoA reductase
Query= BRENDA::A0A081YAY7 (498 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_0379 N515DRAFT_0379 Acyl-CoA reductase Length = 476 Score = 181 bits (458), Expect = 7e-50 Identities = 139/458 (30%), Positives = 216/458 (47%), Gaps = 27/458 (5%) Query: 21 DVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNTPPAKRAQVLFRFKQLLEANEE 80 DV + +G+ +V + D + +QAI AA A R P +R VL Q + Sbjct: 22 DVLDKYSGKVATRVAVPDAKATEQAIAAAVKAAEPMRQFKPWERQAVLQHCVQRFTERRD 81 Query: 81 RIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILKGE-YSRNVGPNIDAWSDFQ-- 137 + + E GK I+D+AGE+ R IE A GE + + ++ + + Sbjct: 82 ELAYALCVEAGKPIKDSAGEVTRLIETFGIAAEEAVRTNGETINLEIAKRLNGYHGYTRR 141 Query: 138 -PIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPSSTLLIAELFHEAGLPKG 196 P+G V+ ITPFNFP + AIA G F+LKP+ER P L+I E+ E LPKG Sbjct: 142 VPLGPVSFITPFNFPLNLVAHKVAPAIAAGCPFVLKPAERTPIGALIIGEVLAETDLPKG 201 Query: 197 VLNVVHGDKGAVDALIEAPEVKALSFVGSTPIAEYIYSEGTKRGKRVQALGGAKNHAVLM 256 ++++ D L+E P K LSF GS + G K K LGG +A + Sbjct: 202 AFSILNLDGKHASPLVEDPRFKLLSFTGSQIGWDLKTRAGHK--KVTLELGG---NAACI 256 Query: 257 PDAD----LDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQKLVPQIKGLKIGA 312 DAD LD+ + L+ A+ G+ C+++ + + + D L ++LV +KGLK G Sbjct: 257 VDADQLPRLDHVIERLVFGAFYQSGQSCISVQ-RIYAHESLYDELKKRLVAAVKGLKAGD 315 Query: 313 GTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHENGFFLGGTLFDRV 372 +GP++ AA +++ G+I+ G +++ G+ G L TL + V Sbjct: 316 PKKKETFLGPMIDEAAAERLHGWIEEARKGGGKVLCGGK-------RKGPMLEATLMENV 368 Query: 373 TPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDGEAARLFCDEIEVG 432 + + ++E+FGP + SL+EA+ + ND +YG IFT A +E+E G Sbjct: 369 RGDAKVNRQEVFGPFALLAPFKSLDEAIAMTNDSDYGLQAGIFTDSLANAMRAWNELEQG 428 Query: 433 MVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRF 470 V VN V +GG K L G +GVR+ Sbjct: 429 GVIVNDVPSFRVDNMPYGGVK------LSGAGREGVRY 460 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 568 Number of extensions: 29 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 476 Length adjustment: 34 Effective length of query: 464 Effective length of database: 442 Effective search space: 205088 Effective search space used: 205088 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory