GapMind for catabolism of small carbon sources

 

Alignments for a candidate for prpF in Dyella japonica UNC79MFTsu3.2

Align 2-methyl-aconitate isomerase; Cis-trans isomerase; EC 5.3.3.- (characterized)
to candidate N515DRAFT_0030 N515DRAFT_0030 2-methylaconitate cis-trans isomerase

Query= SwissProt::Q937N7
         (396 letters)



>FitnessBrowser__Dyella79:N515DRAFT_0030
          Length = 399

 Score =  656 bits (1692), Expect = 0.0
 Identities = 325/390 (83%), Positives = 355/390 (91%)

Query: 3   HVPQIKIPATYIRGGTSKGVFFRLQDLPETAQVPGPARDALLMRVIGSPDPYGKQIDGMG 62
           H PQ++IPATY+RGGTSKGVFFRLQDLP  AQVPG ARDALL RVIGSPDPYGKQIDGMG
Sbjct: 8   HAPQLRIPATYLRGGTSKGVFFRLQDLPAAAQVPGAARDALLQRVIGSPDPYGKQIDGMG 67

Query: 63  AATSSTSKTVILSKSTRPDHDVDYLFGQVSIDQPFVDWSGNCGNLSAAVGPFAISAGLVD 122
            ATSSTSKTVI+S+S+R DHDVDYLFGQV+ID+ FVDWSGNCGNLSAAVGPFAI+ GLVD
Sbjct: 68  GATSSTSKTVIVSRSSRADHDVDYLFGQVAIDKAFVDWSGNCGNLSAAVGPFAIANGLVD 127

Query: 123 ASRIPHNGVAVVRIWQANIGKTIIGHVPVTNGEVQETGDFELDGVTFPAAEVQLEFMDPA 182
            +R+P +G+A+VRIWQANIGKTII  VP+T+G VQETGDFELDGVTFPAAEVQLEF+DPA
Sbjct: 128 PARVPRDGIAIVRIWQANIGKTIIARVPITDGAVQETGDFELDGVTFPAAEVQLEFVDPA 187

Query: 183 AEEEGAGGAMFPTGNVVDDLEVPAVGTLKATMINAGIPTIFVNAESIGYTGTELQDAINS 242
           AEE+GAGGAMFPTG+VVDDLEVP VGTLKATMINAGIPTIFV A +IGYTGTELQDAINS
Sbjct: 188 AEEDGAGGAMFPTGHVVDDLEVPGVGTLKATMINAGIPTIFVEAAAIGYTGTELQDAINS 247

Query: 243 DTRALAMFEDHPCYGALRMGLIKNVDEAAKRQHTPKVAFVRQAGDYVASSGKKVAAADVD 302
           D +ALAMFE    +GALRMGLI  ++E A RQHTPKVAFV    DY+ASSGK+VAA DVD
Sbjct: 248 DAKALAMFETIRAHGALRMGLIATLEEIATRQHTPKVAFVAGPADYLASSGKRVAAGDVD 307

Query: 303 LLVRALSMGKLHHAMMGTAAVAIGTAAAIPGTLVNLAAGGGERNAVRFGHPSGTLRVGAE 362
           LLVRA+SMGKLHHAMMGTAAVAIGTAAAIPGTLVN+AAGGGER+AVRFGHPSGTLRVGAE
Sbjct: 308 LLVRAMSMGKLHHAMMGTAAVAIGTAAAIPGTLVNVAAGGGERHAVRFGHPSGTLRVGAE 367

Query: 363 AQQVDGEWAVKKAIMSRSARVLMEGWVRVP 392
           A QVDG W V KA+MSRSARVLMEGWVRVP
Sbjct: 368 AAQVDGAWTVTKAVMSRSARVLMEGWVRVP 397


Lambda     K      H
   0.317    0.134    0.394 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 610
Number of extensions: 19
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 396
Length of database: 399
Length adjustment: 31
Effective length of query: 365
Effective length of database: 368
Effective search space:   134320
Effective search space used:   134320
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory