Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= TCDB::G4FGN3 (494 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 353 bits (906), Expect = e-102 Identities = 200/497 (40%), Positives = 311/497 (62%), Gaps = 12/497 (2%) Query: 4 ILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEIIY 63 +L+ + + KRF AL GV + GEVHA++G+NGAGKSTL+K++ GV +PD G + Sbjct: 12 VLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSVEL 71 Query: 64 EGRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMG--DEEKRGIFIDYKKMYREA 121 +GR + + P EA GI TV+QE+++ NLSVAEN++ G +R ID++++ R+ Sbjct: 72 DGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQV-RDG 130 Query: 122 EKFMKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEKLF 181 + + + +E+D + LG Y +AI+QMV IARA+ A+VLILDEPTSSL + E +LF Sbjct: 131 ARSLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRELF 190 Query: 182 EVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVGRK 241 V+ L+E+G+AI+F++H L++++ + D+++VLRDG +G ++ +L +V MVGR Sbjct: 191 RVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVGRD 250 Query: 242 LEKFYIKEAHE------PGEVVLEVKNLSGERFENVSFSLRRGEILGFAGLVGAGRTELM 295 L +A P + + G + V +RRGE+LG GL+G+GRTEL Sbjct: 251 LPTVAGADAERAPPPDAPPAIDAQGLGCRG-KLHPVDLQVRRGEMLGLGGLLGSGRTELA 309 Query: 296 ETIFGFRPKRGGEIYIEGKRVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHNVSLPS 355 +FG GE+ I G+RVE+ HP DA+ +G+ L PE+RK G++ +S+ N+ L + Sbjct: 310 RLLFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENIVL-A 368 Query: 356 LDRIKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKPKI 415 L + +S R+ ELA ++ I+ A + V LSGGNQQKV+LA+WL +P++ Sbjct: 369 LQARQGWRGMSRARQDELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVTEPRL 428 Query: 416 LILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKLAGI 475 LILDEPTRGIDV AK E+ +++ A G+ V+ IS+E E+ + DRIAVM + AG Sbjct: 429 LILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERRKAGE 488 Query: 476 IDAKEASQEKVMKLAAG 492 + +++ +V+ + AG Sbjct: 489 LPG-GSTEARVLAMIAG 504 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 610 Number of extensions: 26 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 505 Length adjustment: 34 Effective length of query: 460 Effective length of database: 471 Effective search space: 216660 Effective search space used: 216660 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory