Align α-glucosidase (AG31A;BspAG31A) (EC 3.2.1.20) (characterized)
to candidate N515DRAFT_3227 N515DRAFT_3227 alpha-D-xyloside xylohydrolase
Query= CAZy::BAQ19546.1 (790 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3227 N515DRAFT_3227 alpha-D-xyloside xylohydrolase Length = 956 Score = 241 bits (614), Expect = 2e-67 Identities = 168/534 (31%), Positives = 265/534 (49%), Gaps = 51/534 (9%) Query: 222 FSAEGGQIDYYTLAGPTPKAVLEQYTFLTGRAPIPPKWAIGYHQSRYSYKTEQEVRLLAK 281 FS G +DYY +AG V+ Y +TG+A + P+WA G+ QSR YKT+ E+ AK Sbjct: 377 FSEVGHAVDYYFVAGDNLDQVIAGYREITGKATLLPRWAYGFWQSRERYKTQAEILDTAK 436 Query: 282 TFKEKEIPLDAIHLDIHYM--DGYRVFTFDRSRFPKPEKMVEELKQEGVHIVSIVDPGVK 339 ++E +PLD + D Y D + FD+SRFP + +V++L +H+ ++ K Sbjct: 437 RYRELGLPLDNVVEDWSYWPEDAWGSHDFDKSRFPDAKGLVDQL--HAMHVQLMISVWPK 494 Query: 340 QDPEYHIYKEGIQNDYFCKYLEGEVFFGDV-WPGR---SAFPDFTNEKVRE-WWGQKHAY 394 P Y+E Y + V G+V W G+ +AF D E+ R +W Q Sbjct: 495 FYPTTKNYQELDAKGYIYR---RNVEKGEVDWIGKGYLNAFYDPYAEEARHIYWRQIQEK 551 Query: 395 YANMGIEGIWNDMNEPSVFNE----TKTMDMNVVHENDGDPRTHRELHNIYGMMMGKATY 450 +GI+ W D +EP + + + M G N Y +M Y Sbjct: 552 LGAVGIDAWWLDASEPDTHSNLDIAERKLRMGPTALGPGG-----AFFNSYPLMHTTGVY 606 Query: 451 EGMKKQLGNKRPFLLTRAGFAGVQR-YSAVWTGDNRSFWEHLELSLPMCMNLGVSGVPFV 509 +G ++ G++R F+LTR+ FAG QR +A W+GD S W +L + +N ++G+P Sbjct: 607 DGWRRDHGDRRAFILTRSAFAGQQRNAAATWSGDVASRWSNLHDQISAGLNFSLAGIPNW 666 Query: 510 GPDVGGFA------------HDSNGQLLTRWTQVGAFYPFFRNHSVIESVRQEPW----- 552 D+GGFA D +L RW Q GAF P FR+H Q P+ Sbjct: 667 TTDIGGFALEPRYEKPGAADLDEWRELNLRWFQFGAFSPLFRSHG------QFPYREIYN 720 Query: 553 --AFGEEYEQIIKRYIQLRYQWLPHLYSLFAEANETGVPIMRPLFLEYPDDPHVMNLATQ 610 + G + + Y +LRY+ +P++Y+L + IMR L +++P D V + + Sbjct: 721 LASPGSPVYEALAYYDRLRYRLMPYIYTLAGDTYWKDGTIMRGLAMDFPGDAKVRGIDDE 780 Query: 611 FMVGDNVIVAPIMRPDTYHRVIYLPEG-NWVDYWNEEVLEGGKHHLVEAPLDKLPIYVKQ 669 +M G +VAP+ R +YLP G W ++ + EGG +APL ++P++V+ Sbjct: 781 YMFGPAFLVAPVTEYKATSRPVYLPAGAGWYEFHTGKYHEGGAAIQADAPLARMPLFVRA 840 Query: 670 GTMLVHG-DIKSSTAIPDEKLTLHIYAQTSGEASYSLYEDDGMSFDYEQGSYLR 722 G ++ G DI+ + PD +TL +YA G+ +SLYED+G ++ YE+G Y R Sbjct: 841 GAIVPTGPDIQYTGEKPDAPVTLLVYAGADGQ--FSLYEDEGTTYGYEKGRYSR 892 Lambda K H 0.320 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 2047 Number of extensions: 126 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 790 Length of database: 956 Length adjustment: 42 Effective length of query: 748 Effective length of database: 914 Effective search space: 683672 Effective search space used: 683672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory