Align inositol transporter 4 (characterized)
to candidate N515DRAFT_0382 N515DRAFT_0382 MFS transporter, sugar porter (SP) family
Query= CharProtDB::CH_091598 (582 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_0382 N515DRAFT_0382 MFS transporter, sugar porter (SP) family Length = 472 Score = 186 bits (471), Expect = 2e-51 Identities = 122/360 (33%), Positives = 193/360 (53%), Gaps = 29/360 (8%) Query: 24 TPYIMRLALSAGIGGLLFGYDTGVISGALLFIKEDFDEVDKKTWLQSTIVSMAVAGAIVG 83 T ++ +A +A +GG LFG+DT VI+GA+ ++ F L + + AV+ A++G Sbjct: 14 TARVVLIAAAAALGGFLFGFDTAVINGAVDAVRGSFG-------LGAGRIGFAVSCALLG 66 Query: 84 AAVGGW----INDKFGRRMSILIADVLFLIGAIVMAFAPAPWVIIVGRIFVGFGVGMASM 139 +A+G W + D++GR ++ +A VL I A+ W +++ R+ G GVG+AS+ Sbjct: 67 SALGAWYAGPLADRWGRVRTMQVAAVLLAISALGSGLVAGVWDLVLWRLVGGIGVGVASV 126 Query: 140 TSPLYISEASPARIRGALVSTNGLLITGGQFFSYLINLAFVHTPG-----------TWRW 188 +P YI+E SPAR+RG L S L I G F + L + T G WRW Sbjct: 127 IAPTYIAEVSPARVRGRLGSLQQLAIVLGIFAALLSDAWLAGTAGGASQKLWLGLEAWRW 186 Query: 189 MLGVAGVPAIVQFVLMLSLPESPRWLYRKDRIAESRAILERIYPADEVEAEMEALKLSVE 248 M VA VPA++ L+L +PESPR L K R+ E++ +L ++ + A L + Sbjct: 187 MFLVAVVPALIYGSLVLGVPESPRHLVAKGRMDEAKQVLRQVLDLQDEHALQHKLGDIAQ 246 Query: 249 AEKADEAIIGDSFSAKLKGAFGNPVVRRGLAAGITVQVAQQFVGINTVMYYSPSIVQFAG 308 + +++ + G PVV GI + V QQFVGIN + YYS ++ G Sbjct: 247 SLRSEYRPGLRDLRGSMAGLL--PVV----WVGILLSVFQQFVGINVIFYYSSTLWHSVG 300 Query: 309 YASNKTAMALSLITSGLNALGSIVSMMFVDRYGRRKLMIISMFGIIACLIILATVFSQAA 368 + S A ++S++TS +N L ++V++ VDR GR+ L+ I G+ L ++A FSQAA Sbjct: 301 F-SESDAFSISVVTSVVNVLVTLVAIALVDRIGRKPLLAIGSAGMTVTLGLMAWCFSQAA 359 Score = 73.2 bits (178), Expect = 2e-17 Identities = 35/104 (33%), Positives = 63/104 (60%), Gaps = 1/104 (0%) Query: 453 PSKFGFLAIVFLGLYIVVYAPGMGTVPWIVNSEIYPLRYRGLGGGIAAVSNWVSNLIVSE 512 P+ +G +A+V Y+V + G + W++ E++P R R + +AA + WV+N I++ Sbjct: 368 PAPWGMVALVAANAYVVFFGLSWGPMVWVLLGEMFPNRIRAIALAVAAAAQWVANFIITS 427 Query: 513 SFLSLTHALGSSGTFLLFAGFSTIGLFFIWLLVPETKGLQFEEV 556 SF +L+ LG S + ++A F+ + L F+ V ETKG++ EE+ Sbjct: 428 SFPALSE-LGLSFAYGVYAFFALVSLVFVVKAVRETKGMELEEM 470 Lambda K H 0.324 0.139 0.422 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 653 Number of extensions: 41 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 582 Length of database: 472 Length adjustment: 35 Effective length of query: 547 Effective length of database: 437 Effective search space: 239039 Effective search space used: 239039 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory