Align Probable inositol transporter 3 (characterized)
to candidate N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter
Query= SwissProt::Q9ZQP6 (580 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter Length = 463 Score = 207 bits (528), Expect = 6e-58 Identities = 121/338 (35%), Positives = 194/338 (57%), Gaps = 19/338 (5%) Query: 33 AGIGGLLFGYNTGVIAGALLYIKEEFGEVDNKTWLQEIIVSMTVAGAIVGAAIGGWYNDK 92 A + GL+FG + GVI+GA +IK EF D+ E IVS + GA VGA GW + Sbjct: 24 AALAGLMFGLDIGVISGASQFIKAEFAISDHTI---EWIVSSMMFGAAVGALGAGWLSSH 80 Query: 93 FGRRMSVLIADVLFLLGALVMVIAHAPWVIILGRLLVGFGVGMASMTSPLYISEMSPARI 152 GR+ S+++ +LF++G+L+ +A +P +I R+++G +G+A+ T+PLY++E++P I Sbjct: 81 LGRKRSLILGAILFVIGSLLCGLAWSPETLIAARVILGLAIGIATFTAPLYLAEVAPEHI 140 Query: 153 RGALVSTNGLLITGGQFLSYLINLAFVHTPGTWRWMLGVSAIPAIIQFCLMLTLPESPRW 212 RGA++ST L+IT G +++L + A + G WRWMLGV AIP + +L LP+SPRW Sbjct: 141 RGAMISTYQLMITIGILVAFLSDTALSY-HGAWRWMLGVIAIPGALFLLGVLGLPDSPRW 199 Query: 213 LYRNDRKAESRDILERIYPAEMVEA-EIAALKESVRAETADEDIIGHTFSDKLRGALSNP 271 L R+ E+ D+L R+ E+V A E A ++E ++ D+ NP Sbjct: 200 LMMRGRRDEAIDVLRRLRGDEVVVAREAADIEEQLKTPQRGWDLFA-----------ENP 248 Query: 272 VVRHGLAAGITVQVAQQFVGINTVMYYSPTILQFAGYASNKTAMALALITSGL-NAVGSV 330 R + G +Q+ QQF G+N VMYY+P I Q GY + AL+ GL N + + Sbjct: 249 NFRRSVFLGALLQIMQQFTGMNVVMYYAPRIFQEMGYDTAAQMWFTALV--GLTNVLATF 306 Query: 331 VSMMFVDRYGRRKLMIISMFGIITCLVILAAVFNEASN 368 +++ +DR+GR+ ++ + L ++ A+ N N Sbjct: 307 IAIALIDRWGRKPILYTGFAVMAVGLGVVGALMNGGIN 344 Score = 87.4 bits (215), Expect = 1e-21 Identities = 42/108 (38%), Positives = 67/108 (62%) Query: 457 YLAIVFLGLYIIVYAPGMGTVPWIVNSEIYPLRYRGLAGGIAAVSNWMSNLVVSETFLTL 516 Y + L +I+ +A G + W + SEI PL+ R G++ +NW++N+VV TFL+L Sbjct: 350 YTCVAMLLFFIVGFAMSAGPLVWTLCSEIQPLKGRDFGIGVSTFTNWITNMVVGFTFLSL 409 Query: 517 TNAVGSSGTFLLFAGSSAVGLFFIWLLVPETKGLQFEEVEKLLEGGFR 564 N +G++ TF L+A +AV + + LVPETKG+ E++E+ L G R Sbjct: 410 LNTIGNASTFWLYAALNAVFIVLTFWLVPETKGVTLEQIERNLMAGKR 457 Lambda K H 0.323 0.137 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 763 Number of extensions: 42 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 580 Length of database: 463 Length adjustment: 35 Effective length of query: 545 Effective length of database: 428 Effective search space: 233260 Effective search space used: 233260 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.5 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (22.0 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory