Align Inositol transport system ATP-binding protein (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein Length = 505 Score = 152 bits (385), Expect = 1e-41 Identities = 89/250 (35%), Positives = 145/250 (58%), Gaps = 4/250 (1%) Query: 7 LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF 66 +++ +G+ K FG+ +AL GV + + GE H L+G NGAGKST IK ++GV +P +G + Sbjct: 12 VLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSVEL 71 Query: 67 EGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANR 126 +G+ + + P +A GI TV+Q + + P +SV+ N + G P R+ L++ D Sbjct: 72 DGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRR--RLRMIDWRQVRD 129 Query: 127 ITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTAN 186 +R++ + L D +G+ RQ VAIARA+ A+VLILDEPTS+L + Sbjct: 130 GARSLLRQLHLEL-DVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRE 188 Query: 187 VLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 + I ++R++G+A++F+TH + AV DR TVL G +G D+ L + M Sbjct: 189 LFRVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMV- 247 Query: 247 GQELATLEGS 256 G++L T+ G+ Sbjct: 248 GRDLPTVAGA 257 Score = 72.8 bits (177), Expect = 1e-17 Identities = 62/244 (25%), Positives = 108/244 (44%), Gaps = 11/244 (4%) Query: 6 PLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDIL 65 P I QG+ G L V + V GE L G G+G++ + + G+ + +G++ Sbjct: 269 PAIDAQGL----GCRGKLHPVDLQVRRGEMLGLGGLLGSGRTELARLLFGLDRAERGELR 324 Query: 66 FEGQPLHFADPRDAIAAGIATVHQHL---AMIPLMSVSRNFFMGNEPIRKIGPLKLFDHD 122 G+ + P DA+ G+A + ++ +SV N + + + + D Sbjct: 325 IGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENIVLALQARQGWRGMSRARQD 384 Query: 123 YANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVR 182 + + ++ +GI + VG LSGG +Q V +AR + ++LILDEPT + V Sbjct: 385 ---ELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVTEPRLLILDEPTRGIDVA 441 Query: 183 QTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQD 242 ++A + + G+AV+FI+ DR V+ + G G A L Sbjct: 442 AKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERRKAGELPGGSTEARVLA- 500 Query: 243 MMAG 246 M+AG Sbjct: 501 MIAG 504 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 313 Number of extensions: 14 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 505 Length adjustment: 29 Effective length of query: 232 Effective length of database: 476 Effective search space: 110432 Effective search space used: 110432 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory