Align Inositol transport system ATP-binding protein (characterized)
to candidate N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein Length = 513 Score = 152 bits (384), Expect = 1e-41 Identities = 91/243 (37%), Positives = 140/243 (57%), Gaps = 7/243 (2%) Query: 7 LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGV--HKPTKGDI 64 L M+GI K FG V AL G+ + + GEC L G+NGAGKST +K +SGV H G+I Sbjct: 7 LFEMRGIAKSFGGVKALDGIDLRLRAGECLGLCGENGAGKSTLMKVLSGVYPHGSWDGEI 66 Query: 65 LFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYA 124 L++GQPL RD+ AGI +HQ L ++P +SV+ N F+G+E R G + +D YA Sbjct: 67 LWQGQPLRARSVRDSERAGIVIIHQELMLVPQLSVAENIFLGHEITRPGGRMD-YDAMYA 125 Query: 125 NR-ITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQ 183 ++E+ +N+ P G GG +Q IA+A+ AK+LILDEPTS+L + Sbjct: 126 KADALLQELGLHDVNVALPAMHYG---GGHQQLFEIAKALAKQAKLLILDEPTSSLTSSE 182 Query: 184 TANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDM 243 T +L ++ ++++GVA ++I+H + V D V+ G+ + T ++ + L + Sbjct: 183 TEVLLGIVEDLKRRGVACIYISHKLDEVERVCDTVCVIRDGRHIATQPMHELDVDTLITL 242 Query: 244 MAG 246 M G Sbjct: 243 MVG 245 Score = 82.0 bits (201), Expect = 2e-20 Identities = 63/229 (27%), Positives = 102/229 (44%), Gaps = 26/229 (11%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF-EGQPLHFADPRDAIAAGI 84 VS + GE + G GAG++ + + G + LF EG+PL P DAI AG+ Sbjct: 285 VSFQLRRGEILGIAGLVGAGRTELVSAIFGAYTGKSSVELFLEGRPLKIRSPADAIRAGL 344 Query: 85 ATV---HQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKM------ 135 V + ++PL+ V N L DH YA+ ++ R++ Sbjct: 345 GMVPEDRKRHGIVPLLGVGDNI-----------TLATLDH-YAHAGHIDRQRELVAIEAQ 392 Query: 136 ----GINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATI 191 + P + LSGG +Q +A+ + KVLILDEPT + V A + I Sbjct: 393 IAERRVKTASPALPIARLSGGNQQKAVLAKMLLARPKVLILDEPTRGVDVGAKAEIYRLI 452 Query: 192 DKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEEL 240 ++ QGVA+V ++ + L + DR V+ G+ G ++ E++ Sbjct: 453 FELAAQGVAIVLVSSEMPEVLGMADRVLVMGEGRLRGDFPNQGLTQEQV 501 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 349 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 513 Length adjustment: 29 Effective length of query: 232 Effective length of database: 484 Effective search space: 112288 Effective search space used: 112288 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory