Align Inositol transport system ATP-binding protein (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= reanno::WCS417:GFF2332 (517 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 342 bits (878), Expect = 1e-98 Identities = 190/497 (38%), Positives = 294/497 (59%), Gaps = 7/497 (1%) Query: 21 PYLLEIVNISKGFPGVVALADVQLRVRPGTVLALMGENGAGKSTLMKIIAGIYQPDAGEI 80 P +L+ + K F +AL V L +R G V ALMG+NGAGKSTL+K++ G+ +PD G + Sbjct: 10 PVVLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSV 69 Query: 81 RLRGKPIVFETPLAAQKAGIAMIHQELNLMPHMSIAENIWIGR-EQLNSLHMVNHREMHR 139 L G+ I TP+ AQ+ GI ++QE+NL P++S+AEN++ GR + L M++ R++ Sbjct: 70 ELDGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRD 129 Query: 140 CTAELLARLRINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITEKEVAHL 199 LL +L + LD + +G+ +A RQMV IA+A+ + +LI+DEPTS++ E EV L Sbjct: 130 GARSLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVREL 189 Query: 200 FSIIADLKSQGKGIVYITHKMNEVFAIADEVAVFRDGHYIGLQRADSMNSDSLISMMVGR 259 F +IA L+ +G I+++TH +++V+A++D + V RDG +G + +L++ MVGR Sbjct: 190 FRVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVGR 249 Query: 260 ELSQL----FPLRETPIGDLLLTVRDLTLDGVFKDVSFDLHAGEILGIAGLMGSGRTNVA 315 +L + P + + L G V + GE+LG+ GL+GSGRT +A Sbjct: 250 DLPTVAGADAERAPPPDAPPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLGSGRTELA 309 Query: 316 ETIFGITPSSSGQITLDGKAVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAV 375 +FG+ + G++ + G+ V + P A+ +G AL E+RK G+ LSV EN+ +A+ Sbjct: 310 RLLFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENIVLAL 369 Query: 376 LPHYTGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRL 435 G + + L + + L +K +E + LSGGNQQK +LARWL+T PRL Sbjct: 370 QARQGWRGMSRARQ-DELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVTEPRL 428 Query: 436 LILDEPTRGIDVGAKAEIYRLIAFLASEGMAVIMISSELPEVLGMSDRVMVMHEGELMGT 495 LILDEPTRGIDV AK E+ + A GMAV+ IS+E E+ DR+ VM E G Sbjct: 429 LILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERRKAGE 488 Query: 496 LDRSEATQEKVMQLASG 512 L +T+ +V+ + +G Sbjct: 489 LP-GGSTEARVLAMIAG 504 Lambda K H 0.320 0.136 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 565 Number of extensions: 34 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 505 Length adjustment: 35 Effective length of query: 482 Effective length of database: 470 Effective search space: 226540 Effective search space used: 226540 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory