Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate N515DRAFT_1248 N515DRAFT_1248 ABC-2 type transport system ATP-binding protein
Query= TCDB::B8H229 (515 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_1248 N515DRAFT_1248 ABC-2 type transport system ATP-binding protein Length = 315 Score = 89.0 bits (219), Expect = 2e-22 Identities = 70/221 (31%), Positives = 111/221 (50%), Gaps = 9/221 (4%) Query: 4 LDVSQVSKSFPG-VRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 + V +SK++ G +AL +DL + GE+ ALLG NGAGK+TLI I+ AGTV+ Sbjct: 12 VSVRGISKTYKGGFQALKSIDLDIRRGEIFALLGPNGAGKTTLISIICGIVKPSAGTVSA 71 Query: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRADAQ 122 G + RD L R ++G+ + QE + +V + R GL +R + Sbjct: 72 DGHDV-LRDYRLTRAKIGL--VPQELSTDAFETVWAAVRFSR-----GLFGRARDDRHIE 123 Query: 123 ALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHAI 182 +L DL L DA + L+ ++ V IAKA+ ++ +DEPTA + + + Sbjct: 124 KVLRDLSLWEKKDAKIMTLSGGMKRRVLIAKALAHEPSILFLDEPTAGVDVELRHDMWEM 183 Query: 183 IAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGD 223 + L+A V+VI +H + E + M DR V+ G + D Sbjct: 184 VRRLRATGVTVILTTHYIEEAEEMADRVGVITRGELILVED 224 Score = 74.3 bits (181), Expect = 6e-18 Identities = 61/212 (28%), Positives = 104/212 (49%), Gaps = 24/212 (11%) Query: 275 LRQVSFAARGGEIVGLAGLVGAGRTDLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQA 334 L+ + R GEI L G GAG+T L +I G +AG V D + LR R +A Sbjct: 28 LKSIDLDIRRGEIFALLGPNGAGKTTLISIICGIVKPSAGTVSADGHDV-LRDYR-LTRA 85 Query: 335 GIMLVPEDRKQQGCFLDHSIRRNLSLPSLKALSAL-----GQWVDERAERDLVETYRQKL 389 I LVP++ LS + + + A G + R +R + + R Sbjct: 86 KIGLVPQE---------------LSTDAFETVWAAVRFSRGLFGRARDDRHIEKVLRDLS 130 Query: 390 RIKMADAETAIGKLSGGNQQKVLLGRAMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLA 449 + DA+ I LSGG +++VL+ +A+A P +L +DEPT G+D+ + ++ +++ L Sbjct: 131 LWEKKDAK--IMTLSGGMKRRVLIAKALAHEPSILFLDEPTAGVDVELRHDMWEMVRRLR 188 Query: 450 DLGVAVVVISSELAEVMAVSDRIVVFREGVIV 481 GV V++ + + E ++DR+ V G ++ Sbjct: 189 ATGVTVILTTHYIEEAEEMADRVGVITRGELI 220 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 342 Number of extensions: 14 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 515 Length of database: 315 Length adjustment: 31 Effective length of query: 484 Effective length of database: 284 Effective search space: 137456 Effective search space used: 137456 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory