Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= TCDB::B8H229 (515 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein Length = 505 Score = 354 bits (909), Expect = e-102 Identities = 218/506 (43%), Positives = 303/506 (59%), Gaps = 23/506 (4%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 +L + K F ALD VDL + GEVHAL+G+NGAGKSTLIK+L+ D G+V Sbjct: 12 VLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSVEL 71 Query: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRR--LGLVDWSRLRAD 120 G+V+ P P+ Q+ GI T+YQE NL P LSVAEN+Y GR PRR L ++DW ++R Sbjct: 72 DGRVIAP-STPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRDG 130 Query: 121 AQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLH 180 A++LL L L L+ DAP+ VA +QMV IA+A+ ++AR++I+DEPT++L EV L Sbjct: 131 ARSLLRQLHLELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRELF 190 Query: 181 AIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRH 240 +IA L+ R +++++V+H L +V A+ DR TV+RDG V VAD+ A +V MVGR Sbjct: 191 RVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVGRD 250 Query: 241 ---VEFERRKRRRPPGAVVLKVEGVTPA--APRLSAPGYLRQVSFAARGGEIVGLAGLVG 295 V +R PP A PA A L G L V R GE++GL GL+G Sbjct: 251 LPTVAGADAERAPPPDA--------PPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLG 302 Query: 296 AGRTDLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIR 355 +GRT+LARL+FG D G + + + + L+ P DA+ G+ L PE+RK G + S+R Sbjct: 303 SGRTELARLLFGLDRAERGELRIGGERVELKHPADAVVRGLALCPEERKTDGIVAELSVR 362 Query: 356 RNLSLPSLKALSALGQW--VDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLL 413 N+ L AL A W + + +L Q L IK AD ET +G LSGGNQQKV+L Sbjct: 363 ENIVL----ALQARQGWRGMSRARQDELARQLVQALGIKAADIETPVGLLSGGNQQKVML 418 Query: 414 GRAMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIV 473 R + P++LI+DEPTRGID+ AK E+ ++ A G+AV+ IS+E E+ DRI Sbjct: 419 ARWLVTEPRLLILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIA 478 Query: 474 VFREGVIVADLDAQTATEEGLMAYMA 499 V RE +L +TE ++A +A Sbjct: 479 VMRERRKAGELPG-GSTEARVLAMIA 503 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 691 Number of extensions: 44 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 505 Length adjustment: 34 Effective length of query: 481 Effective length of database: 471 Effective search space: 226551 Effective search space used: 226551 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory