Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein Length = 513 Score = 353 bits (907), Expect = e-102 Identities = 209/509 (41%), Positives = 313/509 (61%), Gaps = 7/509 (1%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAA--HAADAGTV 60 L ++ ++KSF GV+ALD +DL + GE L GENGAGKSTL+K+LS H + G + Sbjct: 7 LFEMRGIAKSFGGVKALDGIDLRLRAGECLGLCGENGAGKSTLMKVLSGVYPHGSWDGEI 66 Query: 61 TFAGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLG-LVDWSRLRA 119 + GQ L R ++ GI I+QE L P+LSVAEN++LG E R G +D+ + A Sbjct: 67 LWQGQPLRARSVR-DSERAGIVIIHQELMLVPQLSVAENIFLGHEITRPGGRMDYDAMYA 125 Query: 120 DAQALLNDLGL-PLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDR 178 A ALL +LGL +N P QQ+ EIAKA+ A+L+I+DEPT++L+ E + Sbjct: 126 KADALLQELGLHDVNVALPAMHYGGGHQQLFEIAKALAKQAKLLILDEPTSSLTSSETEV 185 Query: 179 LHAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVG 238 L I+ LK R V+ IY+SH+L EV+ +CD V+RDGR +A+ + +++V ++ LMVG Sbjct: 186 LLGIVEDLKRRGVACIYISHKLDEVERVCDTVCVIRDGRHIATQPMHELDVDTLITLMVG 245 Query: 239 RHVEFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGR 298 R +E + G V+ + T P + VSF R GEI+G+AGLVGAGR Sbjct: 246 RKLENLYPRIEHAIGEVIFEARHATCLDPVNPQRKRVDDVSFQLRRGEILGIAGLVGAGR 305 Query: 299 TDLARLIFGA-DPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRN 357 T+L IFGA ++ + ++ +PL++RSP DAI+AG+ +VPEDRK+ G + N Sbjct: 306 TELVSAIFGAYTGKSSVELFLEGRPLKIRSPADAIRAGLGMVPEDRKRHGIVPLLGVGDN 365 Query: 358 LSLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAM 417 ++L +L + G +D + E +E + R+K A I +LSGGNQQK +L + + Sbjct: 366 ITLATLDHYAHAGH-IDRQRELVAIEAQIAERRVKTASPALPIARLSGGNQQKAVLAKML 424 Query: 418 ALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFRE 477 PKVLI+DEPTRG+D+GAKAE+++++ +LA GVA+V++SSE+ EV+ ++DR++V E Sbjct: 425 LARPKVLILDEPTRGVDVGAKAEIYRLIFELAAQGVAIVLVSSEMPEVLGMADRVLVMGE 484 Query: 478 GVIVADLDAQTATEEGLMAYMATGTDRVA 506 G + D Q T+E ++A + R A Sbjct: 485 GRLRGDFPNQGLTQEQVLAAAIDTSARAA 513 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 682 Number of extensions: 41 Number of successful extensions: 11 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 513 Length adjustment: 35 Effective length of query: 480 Effective length of database: 478 Effective search space: 229440 Effective search space used: 229440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory