Align Basic amino acid/polyamine antiporter, APA family (characterized, see rationale)
to candidate N515DRAFT_0722 N515DRAFT_0722 amino acid/polyamine/organocation transporter, APC superfamily (TC 2.A.3)
Query= uniprot:A0A1I1Y8J0 (492 letters) >FitnessBrowser__Dyella79:N515DRAFT_0722 Length = 479 Score = 532 bits (1371), Expect = e-156 Identities = 262/489 (53%), Positives = 347/489 (70%), Gaps = 14/489 (2%) Query: 1 MLKNLFATTQISPASADLPGGGAHGEATLKRALTARHLVLLGIGAIIGAGIFVITGQAAA 60 ++++LFA + P A L + +L+R L + LV+LG+GA+IGAGIFVITGQAAA Sbjct: 3 LIRSLFA---VKPVEASLTA-----DDSLRRTLGLKELVVLGVGAVIGAGIFVITGQAAA 54 Query: 61 EHAGPAIVLSFVFAGIACALAALCYAEFAAMLPVSGSAYSYSYATLGEYVAWFVGWSLVL 120 EHAGPA+ LSFV AG+A ALAAL YAEFAAMLPVSGSAY Y+YAT GE +AWF+GW++V Sbjct: 55 EHAGPALTLSFVLAGLAAALAALSYAEFAAMLPVSGSAYVYAYATFGELLAWFIGWNVVA 114 Query: 121 EYLFTVATVAAGWSGYFNKLLALISGWIGHDVSLPQTLAAAPFTVVDGHIQATGMFINLP 180 EYL V++VA GWSGY LL + + +P LA AP + DGH++ TG +NLP Sbjct: 115 EYLLAVSSVAVGWSGYGVGLLKSLG------IEVPAALANAPLSFKDGHLELTGALLNLP 168 Query: 181 AVAIIAAITGLCYVGITQSAFVNSIIVAIKVTVILLFIAFATKYINPDNWHPFIPASEGA 240 A+ ++AA+T L Y G QS S++VA+KV V++LF+ +Y++P WHP++PA++G Sbjct: 169 ALLVVAALTALLYRGTRQSTMFASVVVALKVIVVVLFVVCGLQYVDPSLWHPYVPANQGG 228 Query: 241 SKYGWAGVGRAAAIVFFSYIGFDAVSTAAGEAKNPQRDMPIGIIGSLILCTILYIIVAGI 300 YGWAGV RAA VF++YIGFDAV+TAA E +NPQR++P GI+ SL +CT+LYIIVA + Sbjct: 229 DHYGWAGVFRAATSVFYAYIGFDAVATAAQETRNPQRNVPAGILISLAICTVLYIIVAAV 288 Query: 301 LTGIADFRLLGTPEPVSTALDNYPSLHWLQIIVVIGAVTGLSSVMLVMLMGQPRIFYSMA 360 LTG+ + L T EPV+TAL +P L WL+++ +GAV GL+SV+LVM +G RI YSMA Sbjct: 289 LTGLVPYPQLATAEPVATALAAHPPLAWLKLLTQVGAVAGLTSVILVMHLGLSRILYSMA 348 Query: 361 RDGLIPAVFGRIHQKFRTPHVGTVVVGVLAAALGGLFNIGVLGEMVAMGTLLAFATVCIG 420 DGL+P FG +H++ RTPH T++VG + L +F + +LG++++MGTLLAFATVCIG Sbjct: 349 GDGLLPTFFGAVHERHRTPHRTTLLVGAVGGVLAAVFPLSLLGDLLSMGTLLAFATVCIG 408 Query: 421 VLVLRYTRPELPRAFRVPVPWIVCPLGALACMALFLQSFLEHWRWMLAWIAIGQAIYFLY 480 VLVLR T P LPR FRVP VC LG L C L Q L +W + AW +G IY Y Sbjct: 409 VLVLRRTHPNLPRGFRVPAAPAVCTLGVLVCAFLLAQMNLGNWILLAAWTTLGMLIYIAY 468 Query: 481 GYSHSKLRK 489 GY HS +R+ Sbjct: 469 GYRHSLMRR 477 Lambda K H 0.328 0.141 0.441 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 768 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 479 Length adjustment: 34 Effective length of query: 458 Effective length of database: 445 Effective search space: 203810 Effective search space used: 203810 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory