Align Probable 4-aminobutyrate aminotransferase; EC 2.6.1.19; (S)-3-amino-2-methylpropionate transaminase; EC 2.6.1.22; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT (uncharacterized)
to candidate N515DRAFT_3630 N515DRAFT_3630 4-aminobutyrate aminotransferase
Query= curated2:P94427 (436 letters) >FitnessBrowser__Dyella79:N515DRAFT_3630 Length = 469 Score = 179 bits (455), Expect = 1e-49 Identities = 130/421 (30%), Positives = 206/421 (48%), Gaps = 30/421 (7%) Query: 36 GEGAELYDLDGRRFIDFAGAIGTLNVGHSHPKVVEAVKRQAEELIHPGFNVMMYPTYIEL 95 G+G+ +YD G F+D +N G+ + ++ + +K Q + L + ++ T IEL Sbjct: 44 GQGSWMYDTAGVPFLDLQMWYSAVNFGYGNKRLNDTLKAQIDTLPQVA-SQYLHQTRIEL 102 Query: 96 AEKLCGIAPGSHEKKAI-----FLNSGAEAVENAVKIARKYTKRQGVV-SFTRGFHGRTN 149 A+ IA + +K + F GA+AVE+++K+ R Y + ++ +F G+HGRT Sbjct: 103 AKT---IAVDAQQKFGLKGRVHFNVGGAQAVEDSLKLVRNYKNGKSLMFAFEGGYHGRTL 159 Query: 150 MTMSMTSKVKPYKFGFGPFAPEVYQAPFPYYYQKPAGMSDESYDDMVIQAFNDFFIAS-- 207 S+TS + Y+ FG F PFPY +++P GM+ E Y D ++ F F Sbjct: 160 GASSITSSYR-YRRRFGHFGERAMFIPFPYPFRRPKGMTPEEYSDACVRQFERLFETEYN 218 Query: 208 ------VAPETVACVVMEPVQGEGGFIIPSKRFVQHVASFCKEHGIVFVADEIQTGFART 261 V A +EP+QG GG++IP K F + + ++GI+ V DEIQ GF RT Sbjct: 219 GVWDPKVNQAEYAAFYVEPIQGTGGYVIPPKNFFKDLKKVLDKYGILMVVDEIQMGFWRT 278 Query: 262 GTYFAIEHFDVVPDLITVSKSLAAGL-PLSGVIGRAEML--DAAAPGELGGTYAGSPLGC 318 G ++IEHF V PD+I K+L GL PLSG+ R EM+ + PG T+ +PLG Sbjct: 279 GKLWSIEHFGVTPDIIVFGKALTNGLNPLSGLWAREEMINPEIFPPGSTHSTFNSNPLGT 338 Query: 319 AAALAVLDIIEEEGLNERSEEIGKIIEDKAYEWKQEFPFIGDIRRLGAMAAIEIVKD--- 375 + L V+ + E + G D + ++ IGD+ LG EI D Sbjct: 339 SLGLEVIKMGYELDYETNVAKKGAHFLDALKDLQKRHKEIGDVDGLGLALRAEICTDDGF 398 Query: 376 -PDTREPDKTKAAAIAAYANQN----GLLLLTAGINGNIIRFLTPLVISDSLLNEGLSIL 430 P+ D+ +A N GL+L G N+I F L I+ ++ +++L Sbjct: 399 TPNKALLDRMVDIGLAGDLEHNGKKIGLVLDVGGWYKNVITFAPSLDITHEEIDLAIALL 458 Query: 431 E 431 + Sbjct: 459 D 459 Lambda K H 0.319 0.136 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 468 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 436 Length of database: 469 Length adjustment: 33 Effective length of query: 403 Effective length of database: 436 Effective search space: 175708 Effective search space used: 175708 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory