Align ABC-type sugar transport system, ATPase component protein (characterized, see rationale)
to candidate N515DRAFT_2413 N515DRAFT_2413 simple sugar transport system ATP-binding protein
Query= uniprot:D8IUD1 (522 letters) >FitnessBrowser__Dyella79:N515DRAFT_2413 Length = 505 Score = 324 bits (830), Expect = 5e-93 Identities = 198/479 (41%), Positives = 282/479 (58%), Gaps = 11/479 (2%) Query: 13 LLTLSGIGKRYAAPV-LDGIDLDLRPGQVLALTGENGAGKSTLSKIICGLVDASAGGMML 71 +L G+GKR+ A + LDG+DL LR G+V AL G+NGAGKSTL K++ G+ G + L Sbjct: 12 VLQARGLGKRFGATLALDGVDLALRAGEVHALMGQNGAGKSTLIKLLTGVERPDRGSVEL 71 Query: 72 DGQPYAPASRTQAEGLGIRMVMQELNLIPTLSIAENLFLEKLP--RRFGWIDRKKLAEAA 129 DG+ AP++ +A+ GI V QE+NL P LS+AENL+ + P RR ID +++ + A Sbjct: 72 DGRVIAPSTPMEAQRDGIGTVYQEVNLCPNLSVAENLYAGRYPRRRRLRMIDWRQVRDGA 131 Query: 130 RAQMEVVGLGELDPWTPVGDLGLGHQQMVEIARNLIGSCRCLILDEPTAMLTNREVELLF 189 R+ + + L ELD P+G + +QMV IAR L S R LILDEPT+ L EV LF Sbjct: 132 RSLLRQLHL-ELDVDAPLGSYPVAIRQMVAIARALGVSARVLILDEPTSSLDEGEVRELF 190 Query: 190 SRIERLRAEGVAIIYISHRLEELKRIADRIVVLRDGKLVCNDDIGRYSTEQLVQLMAGEL 249 I +LR G+AI++++H L+++ ++DRI VLRDG V + LV M G Sbjct: 191 RVIAQLRERGMAILFVTHFLDQVYAVSDRITVLRDGCRVGEYAVADLPPAALVNAMVGRD 250 Query: 250 TKVDLDAEHRRI----GAPVLRIRGLGRAPVVHPASLALHAGEVLGIAGLIGSGRTELLR 305 A+ R P + +GLG +HP L + GE+LG+ GL+GSGRTEL R Sbjct: 251 LPTVAGADAERAPPPDAPPAIDAQGLGCRGKLHPVDLQVRRGEMLGLGGLLGSGRTELAR 310 Query: 306 LIFGADRAEQGEIFIGDSQEPARIRSPKDAVKAGIAMVTEDRKGQGLLLPQAISVNTSLA 365 L+FG DRAE+GE+ IG E ++ P DAV G+A+ E+RK G++ ++ N LA Sbjct: 311 LLFGLDRAERGELRIGG--ERVELKHPADAVVRGLALCPEERKTDGIVAELSVRENIVLA 368 Query: 366 NLGSVSRGGMLDHAAESSVAQDYVKKLRIRSGSVAQAAGELSGGNQQKVVIARWLYRDCP 425 GM A + +A+ V+ L I++ + G LSGGNQQKV++ARWL + Sbjct: 369 LQARQGWRGM-SRARQDELARQLVQALGIKAADIETPVGLLSGGNQQKVMLARWLVTEPR 427 Query: 426 IMLFDEPTRGIDIGAKSDIYRLFAELAAQGKGLLVVSSDLRELMQICDRIAVMSAGRIA 484 +++ DEPTRGID+ AK ++ A G +L +S++ EL + CDRIAVM R A Sbjct: 428 LLILDEPTRGIDVAAKQELMAEVTRRAHAGMAVLFISAETGELTRWCDRIAVMRERRKA 486 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 762 Number of extensions: 45 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 522 Length of database: 505 Length adjustment: 35 Effective length of query: 487 Effective length of database: 470 Effective search space: 228890 Effective search space used: 228890 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory