Align Galactose-proton symporter; Galactose transporter (characterized)
to candidate N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter
Query= SwissProt::P0AEP1 (464 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter Length = 463 Score = 605 bits (1559), Expect = e-177 Identities = 302/450 (67%), Positives = 356/450 (79%), Gaps = 1/450 (0%) Query: 12 KAMTFFVCFLAALAGLLFGLDIGVIAGALPFIADEFQITSHTQEWVVSSMMFGAAVGAVG 71 K + C LAALAGL+FGLDIGVI+GA FI EF I+ HT EW+VSSMMFGAAVGA+G Sbjct: 14 KGTVIYTCVLAALAGLMFGLDIGVISGASQFIKAEFAISDHTIEWIVSSMMFGAAVGALG 73 Query: 72 SGWLSFKLGRKKSLMIGAILFVAGSLFSAAAPNVEVLILSRVLLGLAVGVASYTAPLYLS 131 +GWLS LGRK+SL++GAILFV GSL A + E LI +RV+LGLA+G+A++TAPLYL+ Sbjct: 74 AGWLSSHLGRKRSLILGAILFVIGSLLCGLAWSPETLIAARVILGLAIGIATFTAPLYLA 133 Query: 132 EIAPEKIRGSMISMYQLMITIGILGAYLSDTAFSYTGAWRWMLGVIIIPAILLLIGVFFL 191 E+APE IRG+MIS YQLMITIGIL A+LSDTA SY GAWRWMLGVI IP L L+GV L Sbjct: 134 EVAPEHIRGAMISTYQLMITIGILVAFLSDTALSYHGAWRWMLGVIAIPGALFLLGVLGL 193 Query: 192 PDSPRWFAAKRRFVDAERVLLRLRDTSAEAKRELDEIRESLQVKQSGWALFKENSNFRRA 251 PDSPRW + R +A VL RLR RE +I E L+ Q GW LF EN NFRR+ Sbjct: 194 PDSPRWLMMRGRRDEAIDVLRRLRGDEVVVAREAADIEEQLKTPQRGWDLFAENPNFRRS 253 Query: 252 VFLGVLLQVMQQFTGMNVIMYYAPKIFELAGYTNTTEQMWGTVIVGLTNVLATFIAIGLV 311 VFLG LLQ+MQQFTGMNV+MYYAP+IF+ GY +T QMW T +VGLTNVLATFIAI L+ Sbjct: 254 VFLGALLQIMQQFTGMNVVMYYAPRIFQEMGY-DTAAQMWFTALVGLTNVLATFIAIALI 312 Query: 312 DRWGRKPTLTLGFLVMAAGMGVLGTMMHIGIHSPSAQYFAIAMLLMFIVGFAMSAGPLIW 371 DRWGRKP L GF VMA G+GV+G +M+ GI+ + QY +AMLL FIVGFAMSAGPL+W Sbjct: 313 DRWGRKPILYTGFAVMAVGLGVVGALMNGGINGQTEQYTCVAMLLFFIVGFAMSAGPLVW 372 Query: 372 VLCSEIQPLKGRDFGITCSTATNWIANMIVGATFLTMLNTLGNANTFWVYAALNVLFILL 431 LCSEIQPLKGRDFGI ST TNWI NM+VG TFL++LNT+GNA+TFW+YAALN +FI+L Sbjct: 373 TLCSEIQPLKGRDFGIGVSTFTNWITNMVVGFTFLSLLNTIGNASTFWLYAALNAVFIVL 432 Query: 432 TLWLVPETKHVSLEHIERNLMKGRKLREIG 461 T WLVPETK V+LE IERNLM G++LR+IG Sbjct: 433 TFWLVPETKGVTLEQIERNLMAGKRLRDIG 462 Lambda K H 0.327 0.140 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 867 Number of extensions: 37 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 464 Length of database: 463 Length adjustment: 33 Effective length of query: 431 Effective length of database: 430 Effective search space: 185330 Effective search space used: 185330 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory