Align D-2-hydroxyglutarate--pyruvate transhydrogenase DLD2; D-2HG--pyruvate transhydrogenase DLD2; Actin-interacting protein 2; D-lactate dehydrogenase [cytochrome] 2, mitochondrial; D-lactate ferricytochrome C oxidoreductase; D-LCR; EC 1.1.99.40; EC 1.1.2.4 (characterized)
to candidate N515DRAFT_3582 N515DRAFT_3582 FAD/FMN-containing dehydrogenase
Query= SwissProt::P46681 (530 letters) >FitnessBrowser__Dyella79:N515DRAFT_3582 Length = 467 Score = 281 bits (720), Expect = 3e-80 Identities = 162/450 (36%), Positives = 248/450 (55%), Gaps = 22/450 (4%) Query: 86 DLSFYNEDWMRKYKGQSKLVLRPKSVEKVSLILNYCNDEKIAVVPQGGNTGLVGGSVPIF 145 DL Y DW R++ + P +VE+ +L + N+ +AVVP GG TGL GG+V Sbjct: 31 DLEHYGRDWTRRWTPAPLAIALPATVEEAQAVLRWANEHGVAVVPSGGRTGLSGGAVAAQ 90 Query: 146 DELILSLANLNKIRDFDPVSGILKCDAGVILENANNYVMEQNYMFPLDLGAKGSCHVGGV 205 EL+LSL +N++ FDP+ L AG+ L+ ++ ++P+D A+GSC +GG Sbjct: 91 GELVLSLERMNRVLGFDPIDRTLTVQAGIALQAVHDAARSHGLIYPVDFAARGSCSIGGN 150 Query: 206 VATNAGGLRLLRYGSLHGSVLGLEVVMPNGQIVNSMHSMRKDNTGYDLKQLFIGSEGTIG 265 +ATNAGG+R++RYG+ + GL+V+ NG+++ + K+++GYDL+ L IGSEGT+G Sbjct: 151 IATNAGGIRVIRYGNTREWIAGLKVIAGNGELLELNRGLIKNSSGYDLRHLTIGSEGTLG 210 Query: 266 IITGVSILTVPKPKAFNVSYLSVESFEDVQKVFVRARQELSEILSAFEFMD--AKSQVLA 323 I+ ++ P V L++ + +VF R L L AFEF A VLA Sbjct: 211 IVVEATLRLAEPPPPSQVMLLALPDMAALMQVFALFRARLK--LQAFEFFTDIALRHVLA 268 Query: 324 KSQLKDAAFPLEDEHPFYILIETSGSNKDHDDSKLETFLENVMEEGIVTDGVVAQDETEL 383 A L+ EHPFY++ E +++ D+ L F E+ + EG + DG +AQ E + Sbjct: 269 HG----AQRALDGEHPFYVVTEFDAADEAAQDAALAAF-EHGVNEGWIADGAIAQSEAQA 323 Query: 384 QNLWKWREMIPEASQANGGVYKYDVSLPLKDLYSLVEATNARLSEAELVGDSPKPVVGAI 443 LW+ RE I E S A YK D+SL + L + ++ A L +A P + Sbjct: 324 AALWRLREGITE-SLAPHKPYKNDISLRIGALPAFLDEIQALLGDA-------YPHFEVV 375 Query: 444 GYGHVGDGNLHLNVAVREYNKNIE-----KTLEPFVYEFVSSKHGSVSAEHGLGFQKKNY 498 +GH+GDGNLH+NV E + E + + + + GS+SAEHG+G KK Y Sbjct: 376 WFGHIGDGNLHINVLKPEGLADAEFIAQCEQVTKLLAAALQRHGGSISAEHGIGLVKKPY 435 Query: 499 IGYSKSPEEVKMMKDLKVHYDPNGILNPYK 528 + ++S E+ +M+ +K +DPNGILNP K Sbjct: 436 LESTRSAAEIALMRGVKQVFDPNGILNPGK 465 Lambda K H 0.316 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 523 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 530 Length of database: 467 Length adjustment: 34 Effective length of query: 496 Effective length of database: 433 Effective search space: 214768 Effective search space used: 214768 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory