Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3); L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) (characterized)
to candidate N515DRAFT_0465 N515DRAFT_0465 aldehyde dehydrogenase (NAD+)
Query= BRENDA::P49419 (539 letters) >FitnessBrowser__Dyella79:N515DRAFT_0465 Length = 511 Score = 529 bits (1363), Expect = e-155 Identities = 278/504 (55%), Positives = 344/504 (68%), Gaps = 7/504 (1%) Query: 42 LKELGLREENEGVY--NGSWGGRGEV--ITTYCPANNEPIARVRQASVADYEETVKKARE 97 LK LG+ E+ G Y G W + + PA E I V +S ADYE VK+A+E Sbjct: 6 LKALGIGAEHSGTYLGQGEWSRTSDAGALQPVNPATGEVIGTVHASSAADYETIVKRAQE 65 Query: 98 AWKIWADIPAPKRGEIVRQIGDALREKIQVLGSLVSLEMGKILVEGVGEVQEYVDICDYA 157 A+K W PAP+RGE VR G+ALR+ LGSLV+LEMGKI EG GEVQE +DI D+A Sbjct: 66 AFKTWRTTPAPRRGEAVRLCGEALRKHKDALGSLVALEMGKIKPEGDGEVQEMIDIADFA 125 Query: 158 VGLSRMIGGPILPSERSGHALIEQWNPVGLVGIITAFNFPVAVYGWNNAIAMICGNVCLW 217 VG SRM+ G + SER GH + EQ++P+GLVGII+AFNFPVAV+ WN +A ICG++C+W Sbjct: 126 VGQSRMLYGYTMHSERPGHRMYEQYHPLGLVGIISAFNFPVAVWAWNAFLAAICGDICIW 185 Query: 218 KGAPTTSLISVAVTKIIAKVLEDNKLPGAICSLTCGGADIGTAMAKDERVNLLSFTGSTQ 277 K +P T L ++A KI + L+ P G D+ D+R+ L+SFTGST+ Sbjct: 186 KPSPKTPLSAIATMKICNEALKAGGFPDIFFLFNDAGTDLSQGFVDDKRIPLISFTGSTK 245 Query: 278 VGKQVGLMVQERFGRSLLELGGNNAIIAFEDADLSLVVPSALFAAVGTAGQRCTTARRLF 337 VG+ VG V R GRSLLELGGNNAII ADL L +P+ +F AVGTAGQRCTT RRLF Sbjct: 246 VGRMVGERVARRMGRSLLELGGNNAIILDASADLKLAIPAIVFGAVGTAGQRCTTTRRLF 305 Query: 338 IHESIHDEVVNRLKKAYAQI--RVGNPWDPNVLYGPLHTKQAVSMFLGAVEEAKKEGGTV 395 +HESI EV ++L AY Q+ ++G+P L GPL+++ AV +LGAVE+AK GG V Sbjct: 306 VHESIVGEVTDKLVAAYKQVEGKIGDPTLATTLMGPLNSQDAVQAYLGAVEKAKASGGKV 365 Query: 396 VYGGKVM-DRPGNYVEPTIVTGLGHDASIAHTETFAPILYVFKFKNEEEVFAWNNEVKQG 454 + GG + DR GN+V PTIVTG+ + + TETFAPILY+ FK+ +E N+V QG Sbjct: 366 LTGGAALSDRKGNFVLPTIVTGVKNSDEVVQTETFAPILYIMPFKSLDEAIELQNDVPQG 425 Query: 455 LSSSIFTKDLGRIFRWLGPKGSDCGIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWK 514 LSS+IFT+DL ++L GSDCGI NVNI TSGAEIGGAFGGEK TGGGRESGSDAWK Sbjct: 426 LSSAIFTRDLKAAEQYLSSAGSDCGIANVNIGTSGAEIGGAFGGEKETGGGRESGSDAWK 485 Query: 515 QYMRRSTCTINYSKDLPLAQGIKF 538 YMRR T T NYS LPLAQGIKF Sbjct: 486 VYMRRQTNTSNYSDSLPLAQGIKF 509 Lambda K H 0.318 0.136 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 846 Number of extensions: 34 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 511 Length adjustment: 35 Effective length of query: 504 Effective length of database: 476 Effective search space: 239904 Effective search space used: 239904 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory