Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate N515DRAFT_3729 N515DRAFT_3729 aminomuconate-semialdehyde/2-hydroxymuconate-6-semialdehyde dehydrogenase
Query= SwissProt::Q9H2A2 (487 letters) >FitnessBrowser__Dyella79:N515DRAFT_3729 Length = 483 Score = 473 bits (1217), Expect = e-138 Identities = 237/483 (49%), Positives = 330/483 (68%), Gaps = 6/483 (1%) Query: 8 LMLENFIDGKFLPCSS--YIDSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPSWSSRS 65 L L N IDG+ +++ ++P+TGEV+ P S +++AAV AA A P W++ Sbjct: 4 LRLANLIDGRLQAPRQERWLEVFEPATGEVFAHCPESSFADVDAAVAAAVAAAPGWAATP 63 Query: 66 PQERSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFASSSLHHT 125 ++R+R+L ++ADL+E L+EFA ES+D GK L+LAR++DIPR+V N R+FA++ + + Sbjct: 64 SEQRARLLQRLADLIEARLDEFAALESRDSGKPLSLARSLDIPRAVSNLRYFAAAIVPWS 123 Query: 126 SECTQMDHLGCMHYTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVIAKPSELTSV 185 SE M+ LG ++YT+R P+GV ISPWNLPLYL TWKIAPA+AAGN V+AKPSE+T Sbjct: 124 SESHAME-LGAINYTLRQPLGVVACISPWNLPLYLFTWKIAPALAAGNAVVAKPSEITPC 182 Query: 186 TAWMLCKLLDKAGVPPGVVNIVFGTGPRVGEALVSHPEVPLISFTGSQPTAERITQLSAP 245 TA +L +L +AG PPGV+NIV G GP VG+ALV H +V +SFTGS T +I +AP Sbjct: 183 TAALLGELSIEAGFPPGVLNIVQGRGPEVGQALVEHRDVKAVSFTGSTRTGAQIAAAAAP 242 Query: 246 HCKKLSLELGGKNPAIIFEDANL-DECIPATVRSSFANQGEICLCTSRIFVQKSIYSEFL 304 KKLSLELGGKNPAI+F DA+L D + VRS FANQGEICLC SR+ VQ+SIY F Sbjct: 243 RFKKLSLELGGKNPAIVFADADLSDANLDTIVRSGFANQGEICLCGSRLLVQRSIYDAFR 302 Query: 305 KRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCGEGVDKLSLP 364 +R++ R +VG P + +GAL+S+ H +KV + +A AEG ++ CG D L+LP Sbjct: 303 ERYLAKVRALRVGDPREAATDLGALVSREHFDKVTGCIAQARAEGGRVLCGG--DALALP 360 Query: 365 ARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNVKYGLAATVW 424 G+++ PTVI + E+ +EIFGPV ++PFD E + + AN YGLAA++W Sbjct: 361 GPLAGGWYVAPTVIEGLGPETATNQQEIFGPVVTLIPFDDEAQALAIANGTGYGLAASLW 420 Query: 425 SSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYDFFTEIKTIT 484 ++++ R HR +L G+VW NCWL+R+L PFGG K SG+GREG ++ FFTE K I Sbjct: 421 TTDLSRAHRFGAQLDFGIVWINCWLLRDLRTPFGGAKQSGVGREGGVEALRFFTEPKNIC 480 Query: 485 VKH 487 +++ Sbjct: 481 IRY 483 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 625 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 483 Length adjustment: 34 Effective length of query: 453 Effective length of database: 449 Effective search space: 203397 Effective search space used: 203397 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory