Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate N515DRAFT_3374 N515DRAFT_3374 acetyl-CoA carboxylase, biotin carboxylase subunit
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__Dyella79:N515DRAFT_3374 Length = 458 Score = 384 bits (986), Expect = e-111 Identities = 209/450 (46%), Positives = 290/450 (64%), Gaps = 6/450 (1%) Query: 1 MPPFSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALD 60 MP +V++ANRGEIA RVL+A +G+ +AV+S AD+ H ADE+ IG AP++D Sbjct: 1 MPLLEKVVIANRGEIALRVLRACHSLGIKTVAVHSTADRNLKHVGLADESICIGPAPSVD 60 Query: 61 SYLNIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLD 120 SYLNI II AAE AIHPGYGFLSE A+FAE VE++G FIGP+++V+R + DK++ Sbjct: 61 SYLNIPRIIAAAEITDAQAIHPGYGFLSERADFAEQVEQSGFIFIGPTADVIRLMGDKVE 120 Query: 121 GKRLANMAGVPTAPGSDGPV-TSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQL 179 R AGVP PGS GP+ +DE +++A +IGYP+++KAA GGGG G+ V + L Sbjct: 121 AIRAMKAAGVPCVPGSGGPLGDEVDENIRIAREIGYPVIIKAAGGGGGRGMRVVRTEAHL 180 Query: 180 MDVWERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQK 239 + K+ A AFG +++EK+ NPRH+E Q++ D G+ + ER+C++QRR+QK Sbjct: 181 GNAITMTKQEAKAAFGNDQVYMEKFLENPRHVEIQVLADGQGHAIHLGERDCSMQRRHQK 240 Query: 240 LIEEAPSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVE 299 ++EEAP+P + E RE + + + I Y GTFE F + FYF+E+N R+QVE Sbjct: 241 VVEEAPAPGITPELREQIGKVCVDACLRIGYRGAGTFEFLFE--NGRFYFIEMNTRIQVE 298 Query: 300 HPTTELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGF 359 HP TELI IDLV+ Q+ +A GE L QED+ ++ G AIE RINAED ++F S G Sbjct: 299 HPVTELITGIDLVREQLLIAGGEKLSIRQEDI--KIHGHAIECRINAEDP-DSFLPSPGT 355 Query: 360 VTYYREPTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGG 419 V + P GPGVRVD+ + G +PP YDS++ KLIV+G RE AI ALA+ I G Sbjct: 356 VKRFEAPGGPGVRVDTHLYDGYKIPPNYDSMIGKLIVHGPDRETAIARMRLALAETVIEG 415 Query: 420 IKTTIELYKWIMQDPDFQEGKFSTSYISQK 449 +K I L + IM D FQ G + Y+ ++ Sbjct: 416 VKCNIPLQQRIMADVGFQHGGQNIHYLEKR 445 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 568 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 458 Length adjustment: 34 Effective length of query: 475 Effective length of database: 424 Effective search space: 201400 Effective search space used: 201400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory