Align lactaldehyde dehydrogenase (EC 1.2.1.22); D-glyceraldehyde dehydrogenase (NADP+) (EC 1.2.1.89) (characterized)
to candidate N515DRAFT_3729 N515DRAFT_3729 aminomuconate-semialdehyde/2-hydroxymuconate-6-semialdehyde dehydrogenase
Query= BRENDA::P25553 (479 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3729 N515DRAFT_3729 aminomuconate-semialdehyde/2-hydroxymuconate-6- semialdehyde dehydrogenase Length = 483 Score = 261 bits (667), Expect = 4e-74 Identities = 166/475 (34%), Positives = 247/475 (52%), Gaps = 9/475 (1%) Query: 11 IDGQFVTWRGDAWIDVVNPATEAVISRIPDGQAEDARKAIDAAERAQPEWEALPAIERAS 70 IDG+ R + W++V PAT V + P+ D A+ AA A P W A P+ +RA Sbjct: 10 IDGRLQAPRQERWLEVFEPATGEVFAHCPESSFADVDAAVAAAVAAAPGWAATPSEQRAR 69 Query: 71 WLRKISAGIRERASEISALIVEEGGKIQQLAE-VEVAFTADYIDYMAEWARRYEGEIIQS 129 L++++ I R E +AL + GK LA +++ + Y A + E Sbjct: 70 LLQRLADLIEARLDEFAALESRDSGKPLSLARSLDIPRAVSNLRYFAAAIVPWSSESHAM 129 Query: 130 DRPGENILLFKRALGVTTGILPWNFPFFLIARKMAPALLTGNTIVIKPSEFTPNNAIAFA 189 + N L ++ LGV I PWN P +L K+APAL GN +V KPSE TP A Sbjct: 130 ELGAINYTL-RQPLGVVACISPWNLPLYLFTWKIAPALAAGNAVVAKPSEITPCTAALLG 188 Query: 190 KIVDEIGLPRGVFNLVLGRGETVGQELAGNPKVAMVSMTGSVSAGEKIMATAAKNITKVC 249 ++ E G P GV N+V GRG VGQ L + V VS TGS G +I A AA K+ Sbjct: 189 ELSIEAGFPPGVLNIVQGRGPEVGQALVEHRDVKAVSFTGSTRTGAQIAAAAAPRFKKLS 248 Query: 250 LELGGKAPAIVMDDADLELA-VKAIVDSRVINSGQVCNCAERVYVQKGIYDQFVNRLGEA 308 LELGGK PAIV DADL A + IV S N G++C C R+ VQ+ IYD F R Sbjct: 249 LELGGKNPAIVFADADLSDANLDTIVRSGFANQGEICLCGSRLLVQRSIYDAFRERYLAK 308 Query: 309 MQAVQFGNPAERNDIAMGPLINAAALERVEQKVARAVEEGARVAFGGKAVE-----GKGY 363 ++A++ G+P E +G L++ ++V +A+A EG RV GG A+ G+ Sbjct: 309 VRALRVGDPREA-ATDLGALVSREHFDKVTGCIAQARAEGGRVLCGGDALALPGPLAGGW 367 Query: 364 YYPPTLLLDVRQEMSIMHEETFGPVLPVVAFDTLEDAISMANDSDYGLTSSIYTQNLNVA 423 Y PT++ + E + +E FGPV+ ++ FD A+++AN + YGL +S++T +L+ A Sbjct: 368 YVAPTVIEGLGPETATNQQEIFGPVVTLIPFDDEAQALAIANGTGYGLAASLWTTDLSRA 427 Query: 424 MKAIKGLKFGETYINRENFEAMQGFHAGWRKSGIGGADGKHGLHEYLQTQVVYLQ 478 + L FG +IN ++ G ++SG+G G L + + + + ++ Sbjct: 428 HRFGAQLDFGIVWINCWLLRDLRTPFGGAKQSGVGREGGVEALRFFTEPKNICIR 482 Lambda K H 0.318 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 493 Number of extensions: 16 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 483 Length adjustment: 34 Effective length of query: 445 Effective length of database: 449 Effective search space: 199805 Effective search space used: 199805 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory