Align Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate N515DRAFT_2488 N515DRAFT_2488 succinate-semialdehyde dehydrogenase / glutarate-semialdehyde dehydrogenase
Query= reanno::Smeli:SM_b20891 (477 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_2488 N515DRAFT_2488 succinate-semialdehyde dehydrogenase / glutarate-semialdehyde dehydrogenase Length = 463 Score = 236 bits (601), Expect = 2e-66 Identities = 154/461 (33%), Positives = 231/461 (50%), Gaps = 11/461 (2%) Query: 19 ANINPSNTDDVVGEYARASAEDAKAAIAAAKAAFPAWSRSGILERHAILKKTADEILARK 78 A INP T + V + A+ + A+ A+A F AW G+ R +L+K AD + Sbjct: 4 ATINPY-TGETVKTFPSATDAEVTQALDQAQAMFEAWKDVGVAARVKVLQKAADLLRESH 62 Query: 79 DELGRLLSREEGKTLAEGIGETVRAGQIFEFFAGETLRL-AGEVVPSVRPGIGVE-ITRE 136 + ++L+ E GK + E GE QI E++A +L A E + S P + Sbjct: 63 TQYAKVLTLEMGKVIGEAEGEVELCAQILEYYADHAEQLLAPEKLSSRHPSYTQSWVEHV 122 Query: 137 PAGVVGIITPWNFPIAIPAWKLAPALCYGNTIVFKPAELVPGCSWAIVDILHRAGLPKG- 195 P G++ + PWNFP AP L GN ++ K A VP C+ A + AGLP+G Sbjct: 123 PQGILLAVEPWNFPYYQIVRIAAPQLAAGNVLILKHASNVPQCAAAFERLFREAGLPQGG 182 Query: 196 VLNLVMGKGSVVGQAMLDSPDVQAITFTGSTATGKRVAVASVEHNRKYQLEMGGKNPFVV 255 NL + + +A+++ P VQ + TGS G VA + + +K +E+GG + FVV Sbjct: 183 FTNLYATRDQL--KAIIEDPRVQGVALTGSEGAGAVVAAQAGQALKKSTMELGGADAFVV 240 Query: 256 LDDADLSVAVEAAVNSAFFSTGQRCTASSRIIVTEGIHDRFVAAMGERIKGLVVDDALKP 315 L DADL AV+ AV ++ GQ C +S RIIV + I+D F+ + L D ++P Sbjct: 241 LADADLDKAVQWAVTGRHWNAGQVCCSSKRIIVVDEIYDAFLEKYKAGVARLRAGDPMEP 300 Query: 316 GTHIGPVVDQSQLNQDTDYIAIGKQEGAKL-AFGGEVISRDTPGFYLQPALFTEATNEMR 374 T + P+ + ++ + GAK+ G EV SR G + +P L + +++ Sbjct: 301 STTLAPMSSRGAVDDLKKQLEQAVAHGAKVEVIGAEVPSR---GAFFRPVLLSHVSDDNP 357 Query: 375 ISREEIFGPVAAVIRVKDYDEALAVANDTPFGLSSGIATTSLKHATHFKRNAEAGMVMVN 434 E FGPV+ VIR +D +A+ +AND+PFGL + TT +KH + GMV +N Sbjct: 358 ARYWEFFGPVSQVIRARDEADAIRIANDSPFGLGGSVFTTDIKHGIEVAKKISTGMVYIN 417 Query: 435 LPTAGVDFHVPFGGRKASSYGPREQGKYAAEFYTNVKTAYT 475 PT GV +PFGG + S YG G EF + A T Sbjct: 418 HPT-GVAADLPFGGVRRSGYGRELTGLGIKEFVNHKLIAVT 457 Lambda K H 0.317 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 520 Number of extensions: 25 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 463 Length adjustment: 33 Effective length of query: 444 Effective length of database: 430 Effective search space: 190920 Effective search space used: 190920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory