Align Xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate N515DRAFT_0569 N515DRAFT_0569 dihydroxy-acid dehydratase
Query= reanno::pseudo6_N2E2:Pf6N2E2_1668 (594 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_0569 N515DRAFT_0569 dihydroxy-acid dehydratase Length = 568 Score = 258 bits (659), Expect = 5e-73 Identities = 180/557 (32%), Positives = 272/557 (48%), Gaps = 35/557 (6%) Query: 45 RPIIGIAQTGSDLTPCNRHHLELAQRVKAGIRDAGGIPMEFPVHPIAEQSRRPTAALDRN 104 +P++ + T S+++PCN + ELA++V GIR AGG P+EF + + T + + Sbjct: 31 KPLVAVVHTWSNVSPCNLNLRELAEQVAEGIRAAGGTPIEFNTIAVTDGIAMGTPGMRAS 90 Query: 105 LAYLGLVE-----ILHGYPLDGVVLTTGCDKTTPACLMAAATTDLPAIVLSGGPMLDGHH 159 L ++ + G+ LD +V+ GCDKT PA MA A D+PA+ L GG + G H Sbjct: 91 LISREVITDSIELAVDGHCLDAMVVLCGCDKTIPAAAMAMARLDIPAVALYGGTIAHGTH 150 Query: 160 KGELIGSGTVLWHARNLMAAGEIDYEGFMEMTTAASPSVGHCNTMGTALSMNALAEALGM 219 I V + A AG+ID + A P G C TA +M + LG+ Sbjct: 151 DAHPITIQQV-FEAVGAHGAGKIDDAELAAVERDACPGAGACGGQFTANTMAMVLTTLGL 209 Query: 220 SLPGCASIPAPYRERGQMAYATGKRICDLVRQDIRPSQIMTRQAFENAIAVASALGASSN 279 S G IPA + + A G+ + D +R+ P ++ R + NA + +A S+N Sbjct: 210 SPMGFNDIPATHPAKAAAARRCGELVMDCLREQRTPRALINRTSLRNAARMVAATAGSTN 269 Query: 280 CPPHLIAIARHMGVELSLEDWQRIGEDVPLLVNCMPAGKYLGEGFHRAGGVPSVMHELQK 339 HL+AIAR G +LED++ + P++ + +P G+Y AGG V EL Sbjct: 270 AVLHLLAIAREAGAPWTLEDFEPASKHTPVIADLLPGGRYTAVEMFGAGGAARVAQELIA 329 Query: 340 AGRLHEDCATVSGKTI-GEIVSNSLTSNTDVIHPFDTPLKHRAGFIVLSGNFF-DSAIMK 397 AG L +D TV+G+++ E + DVI P PLK R G+ +L GN + I+K Sbjct: 330 AGML-DDVPTVTGRSLFEEAAAAPRAEQQDVILPVGQPLKPRGGYSILYGNLAPEGCILK 388 Query: 398 MSVVGEAFRKTYLSEPGAENSFEARAIVFEGPEDYHARIDDPALDIDERCILVIRGVGTV 457 ++ G FE A VFE E A + I + ++VIR G Sbjct: 389 LAGKG-------------ATHFEGTARVFESEEQAFAAVQQGR--IAKGDVIVIRNEGPA 433 Query: 458 GYPGSAEVVNMAPPAALIKQGI-DSLPCLGDGRQSGTSASPSILNMSPEAAVGGGLALLK 516 G PG E++ + AALI +G+ D + + DGR SG + + +M+PEA GG +ALL+ Sbjct: 434 GGPGMREMLGVT--AALIGRGLGDDVALITDGRFSGATHGFMVGHMAPEAVRGGPIALLR 491 Query: 517 TNDRLKVDLNTRTVNLLIDDAEMAQRRREWIPNIPPSQTPWQELYRQLVGQLSTGGCLEP 576 DR+++D R + DA++A+RR+ W P P T Y +LVG S G P Sbjct: 492 DGDRIRIDAGLREI---ATDADLAERRQHWTPPAPKVTTGALAKYARLVGSASDGANTHP 548 Query: 577 AT-----LHLRVIARSG 588 T H++V A G Sbjct: 549 ETSVATPKHVQVTATEG 565 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 881 Number of extensions: 51 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 594 Length of database: 568 Length adjustment: 36 Effective length of query: 558 Effective length of database: 532 Effective search space: 296856 Effective search space used: 296856 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory