GapMind for catabolism of small carbon sources

 

Aligments for a candidate for xylG in Dyella japonica UNC79MFTsu3.2

Align Xylose import ATP-binding protein XylG; EC 7.5.2.10 (characterized)
to candidate N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein

Query= SwissProt::P37388
         (513 letters)



>lcl|FitnessBrowser__Dyella79:N515DRAFT_3232 N515DRAFT_3232 xylose
           ABC transporter ATP-binding protein
          Length = 513

 Score =  542 bits (1397), Expect = e-158
 Identities = 278/501 (55%), Positives = 364/501 (72%), Gaps = 3/501 (0%)

Query: 4   LLEMKNITKTFGSVKAIDNVCLRLNAGEIVSLCGENGSGKSTLMKVLCGIYPHGSYEGEI 63
           L EM+ I K+FG VKA+D + LRL AGE + LCGENG+GKSTLMKVL G+YPHGS++GEI
Sbjct: 7   LFEMRGIAKSFGGVKALDGIDLRLRAGECLGLCGENGAGKSTLMKVLSGVYPHGSWDGEI 66

Query: 64  IFAGEEIQASHIRDTERKGIAIIHQELALVKELTVLENIFLGNEITH-NGIMDYDLMTLR 122
           ++ G+ ++A  +RD+ER GI IIHQEL LV +L+V ENIFLG+EIT   G MDYD M  +
Sbjct: 67  LWQGQPLRARSVRDSERAGIVIIHQELMLVPQLSVAENIFLGHEITRPGGRMDYDAMYAK 126

Query: 123 CQKLLAQVSL-SISPDTRVGDLGLGQQQLVEIAKALNKQVRLLILDEPTASLTEQETSIL 181
              LL ++ L  ++        G G QQL EIAKAL KQ +LLILDEPT+SLT  ET +L
Sbjct: 127 ADALLQELGLHDVNVALPAMHYGGGHQQLFEIAKALAKQAKLLILDEPTSSLTSSETEVL 186

Query: 182 LDIIRDLQQHGIACIYISHKLNEVKAISDTICVIRDGQHIGTRDAAGMSEDDIITMMVGR 241
           L I+ DL++ G+ACIYISHKL+EV+ + DT+CVIRDG+HI T+    +  D +IT+MVGR
Sbjct: 187 LGIVEDLKRRGVACIYISHKLDEVERVCDTVCVIRDGRHIATQPMHELDVDTLITLMVGR 246

Query: 242 ELTALYPNEPHTTGDEILRIEHLTAWHPVNRHIKRVNDVSFSLKRGEILGIAGLVGAGRT 301
           +L  LYP   H  G+ I    H T   PVN   KRV+DVSF L+RGEILGIAGLVGAGRT
Sbjct: 247 KLENLYPRIEHAIGEVIFEARHATCLDPVNPQRKRVDDVSFQLRRGEILGIAGLVGAGRT 306

Query: 302 ETIQCLFGVWPGQWEGKIYIDGKQVDIRNCQQAIAQGIAMVPEDRKRDGIVPVMAVGKNI 361
           E +  +FG + G+   +++++G+ + IR+   AI  G+ MVPEDRKR GIVP++ VG NI
Sbjct: 307 ELVSAIFGAYTGKSSVELFLEGRPLKIRSPADAIRAGLGMVPEDRKRHGIVPLLGVGDNI 366

Query: 362 TLAALNKFTGGISQLDDAAEQKCILESIQQLKVKTSSPDLAIGRLSGGNQQKAILARCLL 421
           TLA L+ +      +D   E   I   I + +VKT+SP L I RLSGGNQQKA+LA+ LL
Sbjct: 367 TLATLDHYAHA-GHIDRQRELVAIEAQIAERRVKTASPALPIARLSGGNQQKAVLAKMLL 425

Query: 422 LNPRILILDEPTRGIDIGAKYEIYKLINQLVQQGIAVIVISSELPEVLGLSDRVLVMHEG 481
             P++LILDEPTRG+D+GAK EIY+LI +L  QG+A++++SSE+PEVLG++DRVLVM EG
Sbjct: 426 ARPKVLILDEPTRGVDVGAKAEIYRLIFELAAQGVAIVLVSSEMPEVLGMADRVLVMGEG 485

Query: 482 KLKANLINHNLTQEQVMEAAL 502
           +L+ +  N  LTQEQV+ AA+
Sbjct: 486 RLRGDFPNQGLTQEQVLAAAI 506


Lambda     K      H
   0.319    0.137    0.391 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 745
Number of extensions: 26
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 513
Length of database: 513
Length adjustment: 35
Effective length of query: 478
Effective length of database: 478
Effective search space:   228484
Effective search space used:   228484
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory