Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein
Query= uniprot:Q9WXX0 (520 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_3232 N515DRAFT_3232 xylose ABC transporter ATP-binding protein Length = 513 Score = 385 bits (989), Expect = e-111 Identities = 220/504 (43%), Positives = 318/504 (63%), Gaps = 19/504 (3%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDA--GEI 71 + + +GI K F GV A+D +D + E + L GENGAGKSTL+K+L+GV + GEI Sbjct: 7 LFEMRGIAKSFGGVKALDGIDLRLRAGECLGLCGENGAGKSTLMKVLSGVYPHGSWDGEI 66 Query: 72 LVNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDEN 131 L G+ + S D+ + GI +IHQEL L ++VAENIFL +E R R+D + Sbjct: 67 LWQGQPLRARSVRDSERAGIVIIHQELMLVPQLSVAENIFLGHEITRP-----GGRMDYD 121 Query: 132 YMYTRSKELLDLIGAKFSPDAL-VRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVE 190 MY ++ LL +G AL + +Q+ EI KAL K+ +++ +DEPTSSLT Sbjct: 122 AMYAKADALLQELGLHDVNVALPAMHYGGGHQQLFEIAKALAKQAKLLILDEPTSSLTSS 181 Query: 191 ETERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIK 250 ETE L I+E LK RG++ +++SH+LDEV R+ D + V+RDG+ I E DVDT+I Sbjct: 182 ETEVLLGIVEDLKRRGVACIYISHKLDEVERVCDTVCVIRDGRHIATQPMHELDVDTLIT 241 Query: 251 MMVGREVEFFPHGIETRPGEIALEVRNLKWKD-------KVKNVSFEVRKGEVLGFAGLV 303 +MVGR++E IE GE+ E R+ D +V +VSF++R+GE+LG AGLV Sbjct: 242 LMVGRKLENLYPRIEHAIGEVIFEARHATCLDPVNPQRKRVDDVSFQLRRGEILGIAGLV 301 Query: 304 GAGRTETMLLVFGV-NQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMT 362 GAGRTE + +FG K S ++++ GR ++I++P DAI+ G+G++PEDRK G+V + Sbjct: 302 GAGRTELVSAIFGAYTGKSSVELFLEGRPLKIRSPADAIRAGLGMVPEDRKRHGIVPLLG 361 Query: 363 VKDNIVLPSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVL 422 V DNI L +L + G + D ++E E + +KT S LSGGNQQK VL Sbjct: 362 VGDNITLATLDHYAHAGHI-DRQRELVAIEAQIAERRVKTASPALPIARLSGGNQQKAVL 420 Query: 423 AKWLATNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIV 482 AK L +LI DEPTRG+DVGAKAEI+R+I ELAAQG A++++SSE+PE+L ++DR++ Sbjct: 421 AKMLLARPKVLILDEPTRGVDVGAKAEIYRLIFELAAQGVAIVLVSSEMPEVLGMADRVL 480 Query: 483 VMWEGEITAVLDNREKRVTQEEIM 506 VM EG + N + +TQE+++ Sbjct: 481 VMGEGRLRGDFPN--QGLTQEQVL 502 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 660 Number of extensions: 36 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 513 Length adjustment: 35 Effective length of query: 485 Effective length of database: 478 Effective search space: 231830 Effective search space used: 231830 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory