Align Arabinose-proton symporter; Arabinose transporter (characterized)
to candidate N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter
Query= SwissProt::P0AE24 (472 letters) >lcl|FitnessBrowser__Dyella79:N515DRAFT_1228 N515DRAFT_1228 MFS transporter, SP family, galactose:H+ symporter Length = 463 Score = 504 bits (1299), Expect = e-147 Identities = 265/468 (56%), Positives = 336/468 (71%), Gaps = 6/468 (1%) Query: 4 INTESALTPRSLRDTRRMNMFVSVAAAVAGLLFGLDIGVIAGALPFITDHFVLTSRLQEW 63 +N+++ TP + + ++ V AA+AGL+FGLDIGVI+GA FI F ++ EW Sbjct: 1 MNSQAIATPTA--HVKGTVIYTCVLAALAGLMFGLDIGVISGASQFIKAEFAISDHTIEW 58 Query: 64 VVSSMMLGAAIGALFNGWLSFRLGRKYSLMAGAILFVLGSIGSAFATSVEMLIAARVVLG 123 +VSSMM GAA+GAL GWLS LGRK SL+ GAILFV+GS+ A S E LIAARV+LG Sbjct: 59 IVSSMMFGAAVGALGAGWLSSHLGRKRSLILGAILFVIGSLLCGLAWSPETLIAARVILG 118 Query: 124 IAVGIASYTAPLYLSEMASENVRGKMISMYQLMVTLGIVLAFLSDTAFSYSGNWRAMLGV 183 +A+GIA++TAPLYL+E+A E++RG MIS YQLM+T+GI++AFLSDTA SY G WR MLGV Sbjct: 119 LAIGIATFTAPLYLAEVAPEHIRGAMISTYQLMITIGILVAFLSDTALSYHGAWRWMLGV 178 Query: 184 LALPAVLLIILVVFLPNSPRWLAEKGRHIEAEEVLRMLRDTSEKAREELNEIRESLKLKQ 243 +A+P L ++ V+ LP+SPRWL +GR EA +VLR LR E +I E LK Q Sbjct: 179 IAIPGALFLLGVLGLPDSPRWLMMRGRRDEAIDVLRRLRGDEVVVAREAADIEEQLKTPQ 238 Query: 244 GGWALFKINRNVRRAVFLGMLLQAMQQFTGMNIIMYYAPRIFKMAGFTTTEQQMIATLVV 303 GW LF N N RR+VFLG LLQ MQQFTGMN++MYYAPRIF+ G+ T QM T +V Sbjct: 239 RGWDLFAENPNFRRSVFLGALLQIMQQFTGMNVVMYYAPRIFQEMGYDTA-AQMWFTALV 297 Query: 304 GLTFMFATFIAVFTVDKAGRKPALKIGFSVMALGTLVLGYCLMQFDNGTASSGLSWLSVG 363 GLT + ATFIA+ +D+ GRKP L GF+VMA+G V+G + NG + V Sbjct: 298 GLTNVLATFIAIALIDRWGRKPILYTGFAVMAVGLGVVGALMNGGINGQTE---QYTCVA 354 Query: 364 MTMMCIAGYAMSAAPVVWILCSEIQPLKCRDFGITCSTTTNWVSNMIIGATFLTLLDSIG 423 M + I G+AMSA P+VW LCSEIQPLK RDFGI ST TNW++NM++G TFL+LL++IG Sbjct: 355 MLLFFIVGFAMSAGPLVWTLCSEIQPLKGRDFGIGVSTFTNWITNMVVGFTFLSLLNTIG 414 Query: 424 AAGTFWLYTALNIAFVGITFWLIPETKNVTLEHIERKLMAGEKLRNIG 471 A TFWLY ALN F+ +TFWL+PETK VTLE IER LMAG++LR+IG Sbjct: 415 NASTFWLYAALNAVFIVLTFWLVPETKGVTLEQIERNLMAGKRLRDIG 462 Lambda K H 0.327 0.138 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 778 Number of extensions: 42 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 472 Length of database: 463 Length adjustment: 33 Effective length of query: 439 Effective length of database: 430 Effective search space: 188770 Effective search space used: 188770 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory