Align Benzoate--CoA ligase; Benzoyl-CoA synthetase; EC 6.2.1.25 (characterized)
to candidate HSERO_RS00095 HSERO_RS00095 AMP-dependent synthetase
Query= SwissProt::Q8GQN9 (527 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS00095 HSERO_RS00095 AMP-dependent synthetase Length = 539 Score = 204 bits (518), Expect = 9e-57 Identities = 166/530 (31%), Positives = 252/530 (47%), Gaps = 22/530 (4%) Query: 12 TPPAIKIPERYNAADDLIGRNLLAGRGGKTVYIDDAG----SYTYDELALRVNRCGSALR 67 +P +IP +N A R G G + +DA SY+YD+L + +R +ALR Sbjct: 12 SPYEWQIPTHFNIAQAACDR-WADGSGRTAIICEDADGSVTSYSYDQLKILSDRFANALR 70 Query: 68 TTLGLQPKDRVLVCVLDGIDFPTTFLGAIKGGVVPIAINTLLTESDYEYMLTDSAARVAV 127 G+ DR+ + + I+ T L A K G + + + L Y L +S A VA+ Sbjct: 71 AA-GVGRGDRIGIYLSQRIETVITHLAAYKLGAITVPLFYLFGPDAIAYRLDNSGA-VAL 128 Query: 128 VSQELLPLFAPMLGKVPTLEHLVVAGGAGEDSLAALLATGSEQFEAAP-------TRPDD 180 V+ A + G++P L +V D + ++ AAP T DD Sbjct: 129 VTDASGMEKATLAGELPALR--LVFCVESSDLVLPQTTDFWDRLHAAPAELDPVLTLADD 186 Query: 181 HCFWLYSSGSTGAPKGTVHIHSDLI-HTAELYARPILGIREGDVVFSAAKLFFAYGLGNG 239 +Y+SG+TG KG +H H L+ H + +EGD ++ A + GL + Sbjct: 187 PAMIIYTSGTTGKAKGALHAHRVLLGHLPGVEVSHDSFPQEGDRFWTPADWAWIGGLLDV 246 Query: 240 LIFPLAVGATAVLMA-ERPTPAAVFERLRRHQPDIFYGVPTLYASMLANPDCPKEGELRL 298 L+ L G V E+ A VF L RHQ + PT + + + L Sbjct: 247 LLPSLYHGVAVVARRLEKFDAAEVFGLLARHQIRNVFFPPTALKMLRGAATVRAQADFSL 306 Query: 299 RACTSAGEALPEDVGRRWQARFGVDILDGIGSTEM-LHIFLSNRAGDVHYGTSGKPVPGY 357 R+ S GE L +D+ + GV I + G TE L + S+ G+ G+ VPG+ Sbjct: 307 RSVASGGETLGDDLIAWGREALGVTINEFYGQTECNLVVSSSSHCYPSVSGSMGRAVPGH 366 Query: 358 RLRLIDEDGAEITTAGVAGELQISGPSSAVM--YWNNPEKTAATFMGEWTRSGDKYLVND 415 ++++DE G ++ G G + I P + YW N E T F G++ +GD +++ Sbjct: 367 VVQIVDEQG-QVLPHGTVGNIAIRAPDPVMFLRYWRNEEATREKFAGDFLLTGDLGSMDE 425 Query: 416 EGYYVYAGRSDDMLKVSGIYVSPIEVESALIAHEAVLEAAVVGWEDEDHLIKPKAFIVLK 475 +GY Y GR+DD++ +G + P +E L+ H AV AAVVG +D KAF+VLK Sbjct: 426 QGYIRYLGRNDDVITSAGYRIGPAAIEECLMRHPAVRIAAVVGVKDALRTEVVKAFVVLK 485 Query: 476 PGYGAGEALRTDLKAHVKNLLAPYKYPRWIEFVDDLPKTATGKIQRFKLR 525 G EAL+ +L+ HV+ LA ++YPR I FV LP TATGKI R L+ Sbjct: 486 DGVTPDEALKAELQQHVRAQLAAHEYPRLISFVAALPTTATGKIMRKTLK 535 Lambda K H 0.319 0.138 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 732 Number of extensions: 27 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 527 Length of database: 539 Length adjustment: 35 Effective length of query: 492 Effective length of database: 504 Effective search space: 247968 Effective search space used: 247968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory