Align 4-hydroxybenzoate-CoA ligase (EC 6.2.1.27); 3-hydroxybenzoate-CoA ligase (EC 6.2.1.37) (characterized)
to candidate HSERO_RS19285 HSERO_RS19285 long-chain fatty acid--CoA ligase
Query= BRENDA::Q5P0J2 (493 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS19285 HSERO_RS19285 long-chain fatty acid--CoA ligase Length = 566 Score = 133 bits (335), Expect = 1e-35 Identities = 149/519 (28%), Positives = 215/519 (41%), Gaps = 57/519 (10%) Query: 17 AIECDDEKVSYAVLRDRVSRAAGAW-KTLGLQPGNRVIVFAPDSVDWVVAYLGAIWAGGV 75 A C + +SY L D +SRA G W + LGLQ G RV + P+ + + +A + AG Sbjct: 41 AYVCMGKYLSYREL-DSLSRALGGWLQGLGLQKGARVAIMMPNVLQYPIAIAAILRAGYT 99 Query: 76 AIGVNPRLSMNEFAPILNE-------------CEPRFVWCETEQARALVAE--------- 113 + VNP + E L + C + V T +VA Sbjct: 100 VVNVNPLYTARELEHQLKDSGAEAIFVLENFACTLQKVVAHTNIKHIVVASMGELLGALK 159 Query: 114 -------ARTVAEIVA----DGPGTSNWATHLAAAEAVAPLERATEDAALWIGTSGTTGV 162 R V ++V T + A A + + P+ +D A T GTTGV Sbjct: 160 GTLVNLVVRHVKKLVPAWSLPNAITFSQALSQARGKTLQPVTLTHDDIAFLQYTGGTTGV 219 Query: 163 PKGVVHAQRT----VTNAHSFACGILGL-TAADRLY--ASSKLFFAYALGNSLFAGLRVG 215 KG V R V A + L D+L + L+ +AL G R G Sbjct: 220 AKGAVLTHRNLVANVLQAEEWLTPALKAGKPIDQLVFVCALPLYHIFALTVCNMLGTREG 279 Query: 216 ATVILDRQWPTAERVEYMVEKYRPTLLFSVPTLYRKMLQTGVARRIAQYGIRHCVSAGEA 275 A +L + KY+ +V TLY +L R+ G R CV G A Sbjct: 280 ALNLLIPNPRDIPGFVKELAKYKVNTFPAVNTLYNALLNNADFARLDFSGYRCCVGGGMA 339 Query: 276 LPLAVRQDWREATGHTLISGYGTSETLCLMLFS----DDDSGLM-RPTPLTEVRHADDVD 330 + +V W++ TG +I GYG SET + + D+ +G + P P TE DD Sbjct: 340 VQKSVADKWKKLTGCPIIEGYGLSETSPIASANPCTIDEYTGTIGLPLPSTEFAILDDDG 399 Query: 331 PDV----PQRVWIRHSAVALGYWERPEAQADGFR-DGWFSPGDMFLRHADGRLEYTGRND 385 V P + IR V GYW+RP+ A DG+F GD+ + G + R Sbjct: 400 QPVPLGQPGEIAIRGPQVMPGYWQRPDETAKVMTPDGFFKTGDIGVMDERGYTKIVDRKK 459 Query: 386 DMLKIAGQWVSTLWVEQSLASVCGETLHQIASVGVSSADGLTALAV-LAVASPERRSEAR 444 DM+ ++G V VE +A G + + A VGV D T AV L V ++ A Sbjct: 460 DMILVSGFNVYPNEVEGVVAQHPG--VLECACVGV--PDEHTGEAVKLFVVRKDKTLSAA 515 Query: 445 QRMDEGIATLPGHRRPRWVHWLDELPLTPTGKLQRGRLR 483 Q MD G+++P+++ + DELP T GK+ R LR Sbjct: 516 QLMDYCKEQFTGYKKPKYIEFRDELPKTNVGKILRRELR 554 Lambda K H 0.320 0.133 0.414 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 594 Number of extensions: 30 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 493 Length of database: 566 Length adjustment: 35 Effective length of query: 458 Effective length of database: 531 Effective search space: 243198 Effective search space used: 243198 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory