Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate HSERO_RS09465 HSERO_RS09465 aldehyde dehydrogenase
Query= BRENDA::A0A0E3T552 (503 letters) >FitnessBrowser__HerbieS:HSERO_RS09465 Length = 506 Score = 320 bits (821), Expect = 6e-92 Identities = 195/497 (39%), Positives = 280/497 (56%), Gaps = 22/497 (4%) Query: 11 FIDGEWREPVLKKRIPIINPATEEIIGHIPAATAEDVELAVEAARRALSRNKGRDWASAP 70 FI G++ PV + I+P + ++AEDVELA++AA A + W Sbjct: 22 FIGGKFVPPVKGEYFENISPVIGRAFCEVARSSAEDVELALDAAHAAK-----KSWGKTS 76 Query: 71 GAVRAKYLRAIAAKIGERKPEIAKLEAIDCGKPLDEAAWDIDDVSGCFEYYAELAEGLDA 130 RA L IA ++ +A E +D GKP+ E D+ +++ A + Sbjct: 77 PTERANMLLKIADRMEANLELLATAETLDNGKPIRETM--AADIPLAIDHFRYFAAAVRT 134 Query: 131 QQKAPISLPMEQFKSHVLKEPIGVVGLITPWNYPLLMATWKVAPALAAGCAAILKPSELA 190 Q+ + + + + H EP+GVVG I PWN+P+LMA WK+APALAAG +LKP+E Sbjct: 135 QEGSICPIDNDTYAYH-FHEPLGVVGQIIPWNFPILMAVWKLAPALAAGNCVVLKPAEQT 193 Query: 191 SVTCLELADVCREVGLPPGVLNILTGLGHEAGAPLVSHPHVDKIAFTGSTMTGSKIMTAA 250 + + L ++ ++ +PPGV+NI+ G G EAG PL S+ + KIAFTG T TG IM A Sbjct: 194 PASIMVLIELIADL-IPPGVVNIVQGFGVEAGKPLASNKRIAKIAFTGETTTGRLIMQYA 252 Query: 251 AQLVKPVSLELGGKSPIVVF------DDVDIDKAAEWTAFGCFWTN-GQICSATSRLILH 303 +Q + PV+LELGGKSP + F DD DKA E F F N G++C+ SR+++ Sbjct: 253 SQNLIPVTLELGGKSPNIFFADVLDKDDDFFDKALE--GFAMFALNQGEVCTCPSRVLVQ 310 Query: 304 ENIATEFLDRLLKWCKNIKIADPLEEGCRLGPVVSGGQYEKILKSIETAKSEGARVLSGG 363 E+I F++R LK IK +PL++ +G S Q EKIL I+ K EGA+VL+GG Sbjct: 311 ESIYERFIERALKRVAAIKQGNPLDKSTMIGAQASQEQLEKILSYIDIGKQEGAKVLAGG 370 Query: 364 DRPE---HLKKGFFIEPTIITDVTTSMQIWREEVFGPVLCVKTFSSEDEALELANDTHYG 420 R E L G++++PT+ M+I++EE+FGPV+ V TF E+EAL +ANDT YG Sbjct: 371 GREELGGDLASGYYVKPTVFQG-NNKMRIFQEEIFGPVVSVTTFKDEEEALAIANDTLYG 429 Query: 421 LGAAVISKDLERCDRFSKGLQAGIVWINCSQPCFCQAPWGGNKRSGFGRELGKWGLDNYL 480 LGA + ++D R R + +QAG VW NC A +GG K+SG GRE K LD+Y Sbjct: 430 LGAGLWTRDGTRAFRMGREIQAGRVWTNCYHLYPAHAAFGGYKQSGIGRENHKMMLDHYQ 489 Query: 481 TVKQVTEYVSDDPWGWY 497 K + S G++ Sbjct: 490 QTKNLLVSYSPKALGFF 506 Lambda K H 0.319 0.136 0.424 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 640 Number of extensions: 31 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 503 Length of database: 506 Length adjustment: 34 Effective length of query: 469 Effective length of database: 472 Effective search space: 221368 Effective search space used: 221368 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory