Align citrate transporter (characterized)
to candidate HSERO_RS01150 HSERO_RS01150 membrane protein
Query= CharProtDB::CH_014606 (431 letters) >FitnessBrowser__HerbieS:HSERO_RS01150 Length = 433 Score = 296 bits (758), Expect = 8e-85 Identities = 150/402 (37%), Positives = 233/402 (57%), Gaps = 3/402 (0%) Query: 13 AILRVTSGNFLEQFDFFLFGFYATYIAKTFFPAESEFAALMLTFAVFGSGFLMRPIGAVV 72 AI+ GN LE FDF ++ F+A IAK FFP ++ +L+L A FG GF MRP+G ++ Sbjct: 22 AIVATVIGNGLEWFDFTVYSFFAVIIAKLFFPTGNDLTSLLLAVATFGVGFFMRPVGGIL 81 Query: 73 LGAYIDRIGRRKGLMITLAIMGCGTLLIALVPGYQTIGLLAPVLVLVGRLLQGFSAGVEL 132 LG Y DR+GR+ L +T+ +M GT +I L P Y++IGL AP++++V RLLQGFSAG E+ Sbjct: 82 LGIYADRVGRKAALSVTILLMAVGTTMIGLAPTYESIGLFAPLIIVVARLLQGFSAGGEM 141 Query: 133 GGVSVYLSEIATPGNKGFYTSWQSASQQVAIVVAALIGYGLNVTLGHDEISEWGWRIPFF 192 G + +L+E A + +Y+SW AS VA+++ A +G + +L ++ WGWR+PF Sbjct: 142 GSATAFLTEYAPERERAYYSSWIQASIGVAVLLGAAVGTFVTASLDAAALASWGWRLPFL 201 Query: 193 IGCMIIPLIFVLRRSLQETEAFLQRKHRPDTREIFTTIAKNW-RIITAGTLLVAMTTTTF 251 +G +I P+ + +R L+ET FL+ K + D+ + +N+ R +A +V + T Sbjct: 202 LGIIIGPVGYYIRHHLEETPTFLEEKDKTDSP--LKEVIRNFPRETSASFSMVILWTVCT 259 Query: 252 YFITVYTPTYGRTVLNLSARDSLVVTMLVGISNFIWLPIGGAISDRIGRRPVLMGITLLA 311 Y + Y PTY VL L + M+ G+ + PI G ++DRIGRRP+L G L Sbjct: 260 YVLLFYMPTYSVKVLKLPQTTGFIAGMVGGLCIMVLAPIVGRLADRIGRRPLLSGSAALI 319 Query: 312 LVTTLPVMNWLTAAPDFTRMTLVLLWFSFFFGMYNGAMVAALTEVMPVYVRTVGFSLAFS 371 L+ P+ ++ +AP + + + L F Y G ++AA +E+ P V + G S+A++ Sbjct: 320 LMLAYPMFAYINSAPSLSTLLIFQLVFGTLIAAYTGPILAAFSELFPAKVLSTGLSVAYN 379 Query: 372 LATAIFGGLTPAISTALVQLTGDKSSPGWWLMCAALCGLAAT 413 LA IFGG T L+ TG +P +++M AA T Sbjct: 380 LAVTIFGGFASFFITWLIAATGSTMAPAFYVMIAAAISFVGT 421 Score = 25.0 bits (53), Expect = 0.005 Identities = 21/80 (26%), Positives = 33/80 (41%), Gaps = 10/80 (12%) Query: 11 FGAILRVTSGNFLEQFDFFL------FGFYATY-IAKTFFPAESEFAALMLTFAVFGSGF 63 FG ++ +G L F G Y +A T F FA+ +T+ + +G Sbjct: 346 FGTLIAAYTGPILAAFSELFPAKVLSTGLSVAYNLAVTIFGG---FASFFITWLIAATGS 402 Query: 64 LMRPIGAVVLGAYIDRIGRR 83 M P V++ A I +G R Sbjct: 403 TMAPAFYVMIAAAISFVGTR 422 Lambda K H 0.328 0.141 0.432 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 501 Number of extensions: 20 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 431 Length of database: 433 Length adjustment: 32 Effective length of query: 399 Effective length of database: 401 Effective search space: 159999 Effective search space used: 159999 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory