Align N-succinylglutamate 5-semialdehyde dehydrogenase; Succinylglutamic semialdehyde dehydrogenase; SGSD; EC 1.2.1.71 (characterized)
to candidate HSERO_RS05395 HSERO_RS05395 succinate-semialdehyde dehdyrogenase
Query= SwissProt::Q8ZPV0 (492 letters) >FitnessBrowser__HerbieS:HSERO_RS05395 Length = 484 Score = 216 bits (549), Expect = 2e-60 Identities = 156/463 (33%), Positives = 233/463 (50%), Gaps = 12/463 (2%) Query: 4 WINGDWITG-QGERRRKTNPVSAEILWQGNDANAAQVAEACQAARAAFPRWARQPFAARQ 62 ++NG W QGER NP + E+L AA+ A +AA AA+P W ++ R Sbjct: 15 FVNGQWCDADQGERLAVHNPANGELLGHVPLMGAAETRRAIEAANAAWPAWKKKTAKERS 74 Query: 63 AIVEKFAALLEAHKAELTEVIARETGKPRWEAATEV---TAMINKIAISIKAYHARTGAQ 119 AI+ ++ L+ A+ +L ++ E GKP EA E+ + I A K + T Sbjct: 75 AILRRWYELMLANTDDLALIMTAEQGKPLAEARGEIGYAASFIEWFAEEGKRTYGDTIPS 134 Query: 120 KSELVDGAATLRHRPHGVLAVFGPYNFPGHLPNGHIVPALLAGNTLIFKPSELTPWTGET 179 S + GV A P+NFP + PAL AG ++ KP+E TP++ Sbjct: 135 PSP--SNRIVVIKEAIGVCAAITPWNFPAAMITRKAGPALAAGCPMVLKPAEATPFSALA 192 Query: 180 VIKLWERAGLPAGVLNLVQG-GRETGQALSSLDDLDGLLFTGSASTGYQLHRQLSGQPEK 238 + L ERAG+PAGV ++V G + G ++S + + FTGS G +L Q S K Sbjct: 193 LAVLAERAGIPAGVFSVVTGTPKGIGGEMTSNPIVRKISFTGSTGVG-KLLMQQSASSIK 251 Query: 239 ILALEMGGNNPLIIEDAANIDAAVHLTLQSAFITAGQRCTCARRLLVKQGAQGDAFLARL 298 L+LE+GGN P I+ D A++DAAV + S + AGQ C CA R+ V+ G DAF A+L Sbjct: 252 KLSLELGGNAPFIVFDDADLDAAVEGAIASKYRNAGQTCVCANRIYVQDGVY-DAFAAKL 310 Query: 299 VDVAGRLQPGRWDDDPQPFIGGLISAQAAQHVMEAWRQREALGGRTLLAPRKVKEGTSLL 358 V+ + + G+ ++ G LI+ QA Q V + A G R LL ++ G S Sbjct: 311 VEAVKKFKVGQGTEEGVT-QGPLINEQAVQKVEQHVADAVAKGARVLLGGKRHALGHSFF 369 Query: 359 TPGII-ELTGVADVPDEEVFGPLLNVWRYAHFDEAIRLANNTRFGLSCGLVSTDRAQFEQ 417 P ++ ++T V EE FGP+ ++R+ +E + LAN+T FGL+ S D + + Sbjct: 370 EPTVLADVTPAMQVAREETFGPMAPLFRFKTDEEVLALANDTEFGLASYFYSRDIGRIWR 429 Query: 418 LLLEARAGIVNWNKPLTGAASTAPFGGVGASGNHRPSAWYAAD 460 + +G+V N L + APFGGV SG R + Y D Sbjct: 430 VAEGLESGMVGINTGLI-SNEVAPFGGVKQSGLGREGSHYGID 471 Lambda K H 0.319 0.134 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 555 Number of extensions: 29 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 484 Length adjustment: 34 Effective length of query: 458 Effective length of database: 450 Effective search space: 206100 Effective search space used: 206100 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory