Align Purine/cytidine ABC transporter ATP-binding protein, component of General nucleoside uptake porter, NupABC/BmpA (transports all common nucleosides as well as 5-fluorocytidine, inosine, deoxyuridine and xanthosine) (Martinussen et al., 2010) (Most similar to 3.A.1.2.12). NupA is 506aas with two ABC (C) domains. NupB has 8 predicted TMSs, NupC has 9 or 10 predicted TMSs in a 4 + 1 (or 2) + 4 arrangement (characterized)
to candidate HSERO_RS05250 HSERO_RS05250 D-ribose transporter ATP binding protein
Query= TCDB::A2RKA7 (506 letters) >FitnessBrowser__HerbieS:HSERO_RS05250 Length = 520 Score = 318 bits (815), Expect = 3e-91 Identities = 184/493 (37%), Positives = 291/493 (59%), Gaps = 10/493 (2%) Query: 6 VIQMIDVTKRFGDFVANDKVNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHV 65 VI + +V KRF +A D EL GE+HAL+GENGAGKSTLM ILSG+ + G++ + Sbjct: 22 VIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILL 81 Query: 66 KGKLENIDSPSKAANLGIGMVHQHFMLVDAFTVTENIILGNEVTK--GINLDLKTAKKKI 123 GK I P +A LGIG++HQ L++ + +NI +G E K G+ +D ++ Sbjct: 82 DGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELNRQA 141 Query: 124 LELSERYGLSVEPDALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQ 183 + R L ++P + +++V +QQ VEI K L + +LI DEPTA L AEI EL + Sbjct: 142 AAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELFR 201 Query: 184 IMKNLIKEGKSIILITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGRSV 243 I+++L +G I+ I+HK+DE+R +ADR++V+R GK I TV + + + + +MVGR++ Sbjct: 202 IIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVGRAL 261 Query: 244 SFITE-KAAAQPKDVVLEIKDLNIKESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELV 302 DVVLE++ LN RG ++ +S +R GEI+G AG+ G G+TE+ Sbjct: 262 DGEQRIPPDTSRNDVVLEVRGLN----RGR-AIRDVSFTLRKGEILGFAGLMGAGRTEVA 316 Query: 303 KAITGLTKVDSGSIKLHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQT 362 +AI G +++G I +H + P +G++ EDR GL + M V NIAL + Sbjct: 317 RAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSS 376 Query: 363 YYKPPMSKYGFLDYNKINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNP 422 + ++ GF+D I A+ + + ++ A LSGGNQQK +IA+ + R+ Sbjct: 377 MGR--FTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDC 434 Query: 423 DLLIVSQPTRGLDVGAIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQ 482 D+L +PTRG+DVGA I+K L ++GKA+++IS EL E+L +S R+ V+ +G+I Sbjct: 435 DILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRIT 494 Query: 483 GIVSPETTTKQEL 495 G ++ T++++ Sbjct: 495 GELARADATQEKI 507 Score = 89.7 bits (221), Expect = 2e-22 Identities = 66/225 (29%), Positives = 112/225 (49%), Gaps = 10/225 (4%) Query: 25 VNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHVKGKLENIDSPSKAANLGIG 84 V+ L+KGEI G GAG++ + + G GE+ + G I SP+ A GIG Sbjct: 292 VSFTLRKGEILGFAGLMGAGRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIG 351 Query: 85 MVHQ---HFMLVDAFTVTENIILGN--EVTKGINLDLKTAKKKILELSERYGL---SVEP 136 + + HF L V NI L + T+ +D + ++ + + SVE Sbjct: 352 YLSEDRKHFGLAVGMDVQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQ 411 Query: 137 DALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQIMKNLIKEGKSII 196 A R +S G QQ++ I K L R DIL FDEPT + +E+ +++ L ++GK+I+ Sbjct: 412 QA--RLLSGGNQQKIVIAKWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIV 469 Query: 197 LITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGR 241 +I+ +L E+ ++ R+ V+ G+ + D T +++ +L R Sbjct: 470 MISSELPEVLRMSHRVLVMCEGRITGELARADATQEKIMQLATQR 514 Score = 83.6 bits (205), Expect = 2e-20 Identities = 57/236 (24%), Positives = 117/236 (49%), Gaps = 8/236 (3%) Query: 267 KESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELVKAITGLTKVDSGSIKLHNKDITNQ 326 K G L + ++ AGE+ + G +G G++ L+K ++G+ + DSG I L K + Sbjct: 30 KRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILLDGKPVEIT 89 Query: 327 RPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQTYYKPPMSKYG-FLDYNKINSHARE 385 PR+ +G + ++ + L+ ++ A+NI + + P G F+D +++N A Sbjct: 90 EPRQAQALGIGIIHQELN---LMNHLSAAQNIFIG---REPRKAMGLFIDEDELNRQAAA 143 Query: 386 LMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNPDLLIVSQPTRGLDVGAIEYIHKR 445 + + L+ QQ IA+ + + +LI+ +PT L+ I + + Sbjct: 144 IFARMRL-DMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELFRI 202 Query: 446 LIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQGIVSPETTTKQELGILMVG 501 + + +G ++ IS ++DE+ ++DR++V+ DG+ V + T+ + +MVG Sbjct: 203 IRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVG 258 Lambda K H 0.315 0.135 0.365 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 606 Number of extensions: 36 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 506 Length of database: 520 Length adjustment: 35 Effective length of query: 471 Effective length of database: 485 Effective search space: 228435 Effective search space used: 228435 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory