Align Alcohol dehydrogenase (quinone), cytochrome c subunit; ADH; Alcohol dehydrogenase (quinone), subunit II; Cytochrome c-553; Cytochrome c553; Ethanol:Q2 reductase; G3-ADH subunit II; Quinohemoprotein-cytochrome c complex; Ubiquinol oxidase; EC 1.1.5.5 (characterized)
to candidate HSERO_RS18760 HSERO_RS18760 cytochrome C
Query= SwissProt::Q47945 (478 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS18760 HSERO_RS18760 cytochrome C Length = 499 Score = 287 bits (734), Expect = 7e-82 Identities = 165/434 (38%), Positives = 240/434 (55%), Gaps = 50/434 (11%) Query: 34 AHAQDADEALIKRGEYVARLSDCIACHTALHGQPYAGGLEIKSPIGTIYSTNITPDPEHG 93 A A + ALI+RG Y+A SDCIACHTA G+P AGGL I SP+G I +TNITP HG Sbjct: 43 APAISPEAALIERGHYLAIASDCIACHTAPRGKPMAGGLAIASPVGEIIATNITPSKTHG 102 Query: 94 IGNYTLEDFTKALRKGIRKDGATVYPAMPYPEFARLSDDDIRAMYAFFMHGVKPVALQNK 153 IGNYT E F ALR+G+R DGA +YPAMPY +A LSD D++A+YA+FM GV PV + + Sbjct: 103 IGNYTEEQFAAALRRGVRADGANLYPAMPYTAYAALSDADVQALYAYFMKGVAPVDVATR 162 Query: 154 APDISWPLSMRWPLGMWRAMFVPSMTPGVDKSISDPEVARGEYLVNGPGHCGECHTPRGF 213 D+ +P+++RW + W A+F+ P + + RG YL GP HC CHTPRG+ Sbjct: 163 PTDLPFPMNLRWSMKAWNALFLKEQ-PLPPQPQRSAQWLRGRYLAEGPAHCSTCHTPRGW 221 Query: 214 GMQVKAYGTAGGNAYLAGGAPIDNWIAPSLRSNSDTGLGRWSEDDIVTFLKSGRIDHSA- 272 MQ K + LA GA + W AP++ S+ G+G WS+DD+V +L++GR++ A Sbjct: 222 LMQEKP------DLQLA-GAQVGPWYAPNITSHPSAGIGSWSQDDLVAYLRTGRLEGRAQ 274 Query: 273 VFGGMADVVAYSTQHWSDDDLRATAKYLKSMPAVPEGKNLGQDDGQTTALLNKGGQGNA- 331 G MA+ + +S +++DLRA A Y+K PA+ G G + + ++G GNA Sbjct: 275 AAGSMAEAITHSFSRLTEEDLRAIAVYIKDRPAIATGDAQG-----SGSRFDQGKAGNAL 329 Query: 332 -----------------GAEVYLHNCAICHMNDGTGV-NRMFPPLAGNPVVITDDPTSLA 373 GA ++ +CA CH +G G + +P L N + +L Sbjct: 330 AQFRGRTLSAESPEEIRGARIFSASCASCHGYNGQGSRDGYYPSLFRNSATAGVNANNLI 389 Query: 374 NVVAFG----------GILPPTNSAPSAVAMPGFKNHLSDQEMADVVNFMRKGWGNNAPG 423 + +G +PP P+A+ N LS+ ++A + N++ K +G A Sbjct: 390 ATILYGVDRETEQGGHVFMPPFGDQPNAL------NKLSNADVAALSNYLLKYYGKPA-A 442 Query: 424 TVSASDIQKLRTTG 437 TV A D++ +R G Sbjct: 443 TVKAEDVEVIRQGG 456 Lambda K H 0.317 0.134 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 728 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 478 Length of database: 499 Length adjustment: 34 Effective length of query: 444 Effective length of database: 465 Effective search space: 206460 Effective search space used: 206460 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory