Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate HSERO_RS03640 HSERO_RS03640 D-ribose transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__HerbieS:HSERO_RS03640 Length = 502 Score = 466 bits (1199), Expect = e-136 Identities = 272/511 (53%), Positives = 349/511 (68%), Gaps = 19/511 (3%) Query: 9 TKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPG 68 T+ PLL +R I K+F AL + LT GE+HALMGENGAGKSTLMK+LSG + D G Sbjct: 6 TQTPLLQMRGIRKSFGATLALSDMHLTIRPGEIHALMGENGAGKSTLMKVLSGVHAPDQG 65 Query: 69 GECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRR-GLVARGDM 127 E +DG+ V + P ++R G+ +IYQEL++APN+SVA N+++G L+ R GL+ M Sbjct: 66 -EILLDGRPVALRDPGASRAAGINLIYQELAVAPNISVAANVFMGSELRTRLGLIDHAAM 124 Query: 128 VRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETD 187 L +LGA F + LSIA++Q VEIARA+ +RI++MDEPT LS ET+ Sbjct: 125 RSRTDAVLRQLGAGFGASDLAGRLSIAEQQQVEIARALVHRSRIVIMDEPTAALSERETE 184 Query: 188 RLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMV 247 +LF ++R+LR EG+AI+YISHRMAE+ LADRVTVLRDG FVG L R + +V+MMV Sbjct: 185 QLFNVVRRLRDEGLAIIYISHRMAEVYALADRVTVLRDGSFVGELVRDEIDSERIVQMMV 244 Query: 248 GRDLSGFYTKTH---GQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRT 304 GR LS FY A + ++ VR +A G+ ++ SFD+RAGEVLG AGLVGAGRT Sbjct: 245 GRSLSEFYQHQRIAPADAAQLPTVMQVRALAGGK-IRPASFDVRAGEVLGFAGLVGAGRT 303 Query: 305 ELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQ 364 ELARL+FGAD R+ G++ + G V + PR A+ AGIAY+ EDRK QGLFL Sbjct: 304 ELARLLFGADPRSGGDILL-----EGRPVHIDQ--PRAAMRAGIAYVPEDRKGQGLFLQM 356 Query: 365 SVHENINLIVAARDA-LGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKV 423 +V N + VA+R LGL R R AI L ++VAH + VG LSGGNQQKV Sbjct: 357 AVAANATMNVASRHTRLGLVRSRSLGGVARA--AIQRLNVKVAHPETPVGKLSGGNQQKV 414 Query: 424 MLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDR 483 +L+R LEI P+VLILDEPTRGVDI AKSEIY+L++ LA GVA+++ISSELPEV+G+CDR Sbjct: 415 LLARWLEIAPKVLILDEPTRGVDIYAKSEIYQLVHRLASQGVAVVVISSELPEVIGICDR 474 Query: 484 VLVMREGTLAGEVRPAGSAAETQERIIALAT 514 VLVMREG + GE+ AA TQE I+ LAT Sbjct: 475 VLVMREGMITGEL---AGAAITQENIMRLAT 502 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 707 Number of extensions: 37 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 502 Length adjustment: 35 Effective length of query: 505 Effective length of database: 467 Effective search space: 235835 Effective search space used: 235835 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory