Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate HSERO_RS05250 HSERO_RS05250 D-ribose transporter ATP binding protein
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__HerbieS:HSERO_RS05250 Length = 520 Score = 996 bits (2576), Expect = 0.0 Identities = 520/520 (100%), Positives = 520/520 (100%) Query: 1 MQEDKETSTTGVAASSSSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAG 60 MQEDKETSTTGVAASSSSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAG Sbjct: 1 MQEDKETSTTGVAASSSSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAG 60 Query: 61 KSTLMKILSGVYQRDSGDILLDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFI 120 KSTLMKILSGVYQRDSGDILLDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFI Sbjct: 61 KSTLMKILSGVYQRDSGDILLDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFI 120 Query: 121 GREPRKAMGLFIDEDELNRQAAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSR 180 GREPRKAMGLFIDEDELNRQAAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSR Sbjct: 121 GREPRKAMGLFIDEDELNRQAAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSR 180 Query: 181 VLIMDEPTAALNNAEIAELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIA 240 VLIMDEPTAALNNAEIAELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIA Sbjct: 181 VLIMDEPTAALNNAEIAELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIA 240 Query: 241 TVPMQETSMDTIISMMVGRALDGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGE 300 TVPMQETSMDTIISMMVGRALDGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGE Sbjct: 241 TVPMQETSMDTIISMMVGRALDGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGE 300 Query: 301 ILGFAGLMGAGRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHF 360 ILGFAGLMGAGRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHF Sbjct: 301 ILGFAGLMGAGRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHF 360 Query: 361 GLAVGMDVQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGN 420 GLAVGMDVQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGN Sbjct: 361 GLAVGMDVQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGN 420 Query: 421 QQKIVIAKWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLR 480 QQKIVIAKWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLR Sbjct: 421 QQKIVIAKWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLR 480 Query: 481 MSHRVLVMCEGRITGELARADATQEKIMQLATQRESAVAS 520 MSHRVLVMCEGRITGELARADATQEKIMQLATQRESAVAS Sbjct: 481 MSHRVLVMCEGRITGELARADATQEKIMQLATQRESAVAS 520 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1009 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 520 Length adjustment: 35 Effective length of query: 485 Effective length of database: 485 Effective search space: 235225 Effective search space used: 235225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory